Feldman Jack L, Kam Kaiwen
Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA.
J Physiol. 2015 Jan 1;593(1):3-23. doi: 10.1113/jphysiol.2014.277632.
Breathing in mammals is a seemingly straightforward behaviour controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory breathing behaviour, the identification of much of the circuitry, and the ability to study breathing in vitro as well as in vivo, many neuroscientists and physiologists are surprised that respiratory rhythm generation is still not well understood. Our view is that conventional rhythmogenic mechanisms involving pacemakers, inhibition or bursting are problematic and that simplifying assumptions commonly made for many vertebrate neural circuits ignore consequential detail. We propose that novel emergent mechanisms govern the generation of respiratory rhythm. That a mammalian function as basic as rhythm generation arises from complex and dynamic molecular, synaptic and neuronal interactions within a diverse neural microcircuit highlights the challenges in understanding neural control of mammalian behaviours, many (considerably) more elaborate than breathing. We suggest that the neural circuit controlling breathing is inimitably tractable and may inspire general strategies for elucidating other neural microcircuits.
哺乳动物的呼吸是一种看似简单、由大脑控制的行为。脑干中的一个名为前包钦格复合体的神经核位于产生呼吸节律的神经回路的核心位置。尽管大约25年前就发现了这个微回路,但控制呼吸的机制仍然难以捉摸。鉴于调节呼吸行为明显的简单性和明确的性质,大部分神经回路已被识别,并且具备在体外和体内研究呼吸的能力,许多神经科学家和生理学家惊讶地发现,呼吸节律的产生仍然没有得到很好的理解。我们的观点是,涉及起搏器、抑制或爆发的传统节律发生机制存在问题,而且许多脊椎动物神经回路通常做出的简化假设忽略了重要细节。我们提出,新的涌现机制控制着呼吸节律的产生。像节律产生这样基本的哺乳动物功能源自多样神经微回路内复杂且动态的分子、突触和神经元相互作用,这凸显了理解哺乳动物行为神经控制方面的挑战,许多哺乳动物行为(比呼吸)要复杂得多。我们认为,控制呼吸的神经回路具有独特的可研究性,可能会启发阐明其他神经微回路的通用策略。