Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
Handb Clin Neurol. 2022;188:1-35. doi: 10.1016/B978-0-323-91534-2.00004-7.
Breathing movements in mammals are driven by rhythmic neural activity automatically generated within spatially and functionally organized brainstem neural circuits comprising the respiratory central pattern generator (CPG). This chapter reviews up-to-date experimental information and theoretical studies of the cellular and circuit mechanisms of respiratory rhythm and pattern generation operating within critical components of this CPG in the lower brainstem. Over the past several decades, there have been substantial advances in delineating the spatial architecture of essential medullary regions and their regional cellular and circuit properties required to understand rhythm and pattern generation mechanisms. A fundamental concept is that the circuits in these regions have rhythm-generating capabilities at multiple cellular and circuit organization levels. The regional cellular properties, circuit organization, and control mechanisms allow flexible expression of neural activity patterns for a repertoire of respiratory behaviors under various physiologic conditions that are dictated by requirements for homeostatic regulation and behavioral integration. Many mechanistic insights have been provided by computational modeling studies driven by experimental results and have advanced understanding in the field. These conceptual and theoretical developments are discussed.
哺乳动物的呼吸运动是由空间和功能组织的脑干神经回路中的节律性神经活动自动产生的,这些神经回路包括呼吸中枢模式发生器 (CPG)。本章回顾了关于呼吸节律和模式产生的细胞和电路机制的最新实验信息和理论研究,这些机制在脑干下部的 CPG 的关键组成部分中起作用。在过去的几十年中,在阐明必需的延髓区域的空间结构及其区域细胞和电路特性方面取得了重大进展,这些特性对于理解节律和模式产生机制是必需的。一个基本概念是,这些区域中的电路在多个细胞和电路组织水平上具有产生节律的能力。区域细胞特性、电路组织和控制机制允许在各种生理条件下灵活表达神经活动模式,这些条件是由稳态调节和行为整合的要求决定的。许多由实验结果驱动的计算建模研究提供了机制见解,并推动了该领域的理解。讨论了这些概念和理论的发展。