Laboratory for Chemometrics and Molecular Modeling, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy.
Proteins. 2015 Mar;83(3):517-32. doi: 10.1002/prot.24753. Epub 2015 Jan 24.
The structural comparison of protein binding sites is increasingly important in drug design; identifying structurally similar sites can be useful for techniques such as drug repurposing, and also in a polypharmacological approach to deliberately affect multiple targets in a disease pathway, or to explain unwanted off-target effects. Once similar sites are identified, identifying local differences can aid in the design of selectivity. Such an approach moves away from the classical "one target one drug" approach and toward a wider systems biology paradigm. Here, we report a semiautomated approach, called BioGPS, that is based on the software FLAP which combines GRID Molecular Interactions Fields (MIFs) and pharmacophoric fingerprints. BioGPS comprises the automatic preparation of protein structure data, identification of binding sites, and subsequent comparison by aligning the sites and directly comparing the MIFs. Chemometric approaches are included to reduce the complexity of the resulting data on large datasets, enabling focus on the most relevant information. Individual site similarities can be analyzed in terms of their Pharmacophoric Interaction Field (PIF) similarity, and importantly the differences in their PIFs can be extracted. Here we describe the BioGPS approach, and demonstrate its applicability to rationalize off-target effects (ERα and SERCA), to classify protein families and explain polypharmacology (ABL1 kinase and NQO2), and to rationalize selectivity between subfamilies (MAP kinases p38α/ERK2 and PPARδ/PPARγ). The examples shown demonstrate a significant validation of the method and illustrate the effectiveness of the approach.
蛋白质结合位点的结构比较在药物设计中变得越来越重要;识别结构相似的位点对于药物再利用等技术很有用,并且在多药理学方法中,也可以故意影响疾病途径中的多个靶标,或者解释不必要的脱靶效应。一旦确定了相似的位点,识别局部差异有助于设计选择性。这种方法偏离了经典的“一个靶标一个药物”方法,转向更广泛的系统生物学范式。在这里,我们报告了一种称为 BioGPS 的半自动方法,它基于结合了 GRID 分子相互作用场 (MIF) 和药效基团指纹的软件 FLAP。BioGPS 包括自动准备蛋白质结构数据、识别结合位点,以及通过对齐位点和直接比较 MIF 来进行后续比较。还包括化学计量学方法来降低大数据集上复杂数据的复杂性,从而可以专注于最相关的信息。可以根据药效基团相互作用场 (PIF) 的相似性来分析单个位点的相似性,并且可以提取它们的 PIF 之间的差异。在这里,我们描述了 BioGPS 方法,并演示了它在合理化脱靶效应(ERα 和 SERCA)、分类蛋白质家族和解释多药理学(ABL1 激酶和 NQO2)以及合理化亚家族之间的选择性(MAP 激酶 p38α/ERK2 和 PPARδ/PPARγ)方面的应用。所展示的示例证明了该方法的有效性,并说明了该方法的有效性。