Shao Xuesi M, Kao Liyo, Kurtz Ira
Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA.
Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA.
BMC Biophys. 2014 Dec 11;7(1):14. doi: 10.1186/s13628-014-0014-2. eCollection 2014.
The ion transport stoichiometry (q) of electrogenic transporters is an important determinant of their function. q can be determined by the reversal potential (Erev) if the transporter under study is the only electrogenic transport mechanism or a specific inhibitor is available. An alternative approach is to calculate delta reversal potential (ΔErev) by altering the concentrations of the transported substrates. This approach is based on the hypothesis that the contributions of other channels and transporters on the membrane to Erev are additive. However, Erev is a complicated function of the sum of different conductances rather than being additive.
We propose a new delta current (ΔI) method based on a simplified model for electrogenic secondary active transport by Heinz (Electrical Potentials in Biological Membrane Transport, 1981). ΔI is the difference between two currents obtained from altering the external concentration of a transported substrate thereby eliminating other currents without the need for a specific inhibitor. q is determined by the ratio of ΔI at two different membrane voltages (V1 and V2) where q = 2RT/(F(V2 -V1))ln(ΔI2/ΔI1) + 1. We tested this ΔI methodology in HEK-293 cells expressing the elctrogenic SLC4 sodium bicarbonate cotransporters NBCe2-C and NBCe1-A, the results were consistent with those obtained with the Erev inhibitor method. Furthermore, using computational simulations, we compared the estimates of q with the ΔErev and ΔI methods. The results showed that the ΔErev method introduces significant error when other channels or electrogenic transporters are present on the membrane and that the ΔI equation accurately calculates the stoichiometric ratio.
We developed a ΔI method for estimating transport stoichiometry of electrogenic transporters based on the Heinz model. This model reduces to the conventional reversal potential method when the transporter under study is the only electrogenic transport process in the membrane. When there are other electrogenic transport pathways, ΔI method eliminates their contribution in estimating q. Computational simulations demonstrated that the ΔErev method introduces significant error when other channels or electrogenic transporters are present and that the ΔI equation accurately calculates the stoichiometric ratio. This new ΔI method can be readily extended to the analysis of other electrogenic transporters in other tissues.
电生性转运体的离子转运化学计量比(q)是其功能的一个重要决定因素。如果所研究的转运体是唯一的电生性转运机制或有特异性抑制剂可用,q可通过反转电位(Erev)来确定。另一种方法是通过改变被转运底物的浓度来计算反转电位差(ΔErev)。该方法基于这样的假设,即膜上其他通道和转运体对Erev的贡献是可加性的。然而,Erev是不同电导总和的复杂函数,并非可加性的。
我们基于Heinz(《生物膜运输中的电势》,1981年)提出的电生性继发性主动转运简化模型,提出了一种新的δ电流(ΔI)方法。ΔI是通过改变被转运底物的外部浓度获得的两种电流之间的差值,从而无需特异性抑制剂就能消除其他电流。q由两种不同膜电压(V1和V2)下的ΔI比值确定,其中q = 2RT /(F(V2 - V1))ln(ΔI2 / ΔI1) + 1。我们在表达电生性SLC4钠-碳酸氢根共转运体NBCe2-C和NBCe1-A的HEK-293细胞中测试了这种ΔI方法,结果与使用Erev抑制剂法获得的结果一致。此外,通过计算模拟,我们将q的估计值与ΔErev和ΔI方法进行了比较。结果表明,当膜上存在其他通道或电生性转运体时,ΔErev方法会引入显著误差,而ΔI方程能准确计算化学计量比。
我们基于Heinz模型开发了一种用于估计电生性转运体转运化学计量比的ΔI方法。当所研究的转运体是膜上唯一的电生性转运过程时,该模型简化为传统的反转电位法。当存在其他电生性转运途径时,ΔI方法在估计q时可消除它们的贡献。计算模拟表明,当存在其他通道或电生性转运体时,ΔErev方法会引入显著误差,而ΔI方程能准确计算化学计量比。这种新的ΔI方法可轻松扩展到对其他组织中其他电生性转运体的分析。