Suppr超能文献

在转染了GAT1的HeLa细胞中,钠依赖性GABA诱导的电流。

Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells.

作者信息

Risso S, DeFelice L J, Blakely R D

机构信息

Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

J Physiol. 1996 Feb 1;490 ( Pt 3)(Pt 3):691-702. doi: 10.1113/jphysiol.1996.sp021178.

Abstract
  1. HeLa cells were infected with recombinant vaccinia virus containing the T7 RNA polymerase gene and transfected with the cDNA for a rat GABA transporter, GAT1, cloned downstream of a T7 RNA polymerase promoter. Six to sixteen hours after transfection, whole-cell recording with a voltage ramp in the range -90 to 50 mV revealed GABA-induced currents (approximately -100 pA at -60 mV in 100 microM GABA, 16 h after transfection at room temperature). No GABA-induced currents were observed in parental HeLa cells or in mock-transfected cells. 2. GABA-induced currents were suppressed by extracellular perfusion with GABA-free solutions or addition of GAT1 inhibitors SKF89976-A or SKF100330-A. At fixed voltage the GABA dependence of the inward current fitted the Michaelis-Menten equation with a Hill coefficient, n, near unity and an equilibrium constant, K(m), near 3 microM. The Na+ dependence of the inward currents fitted the Michaelis-Menten equation with n approximately equal to 2 and K(m) approximately equal to 10 mM. The constants n and K(m) for GABA and Na+ were independent of voltage in the range -90 to -30 mV. 3. GABA-induced currents reverse direction in the range 5-10 mV. The implication of this result is that GAT1 can mediate electrogenic (electrophoretic) influx or efflux of GABA depending on the membrane voltage. The presence of an outward current in our experiments is consistent with radioactive-labelled flux data from resealed vesicle studies. However, it is inconsistent with frog oocyte expression experiments using the sample clone. In oocytes, GAT1 generates no outward current in a similar voltage range. Smaller intracellular volume or higher turnover rates in the mammalian expression system may explain the outward currents. 4. External GABA induces inward current, and internal GABA induces outward current. However, in cells initially devoid of internal GABA, external GABA can also facilitate an outward current. This GAT1-mediated outward current occurs only after applying negative potentials to the cell. These data are consistent with the concept that negative potentials drive GABA and Na+ into the cell, which then leads to electrogenic efflux through GAT1 at positive voltages. 5. Assuming coupled transport, we estimate the number of transporters, N, times the turnover rate, r, to be Nr approximately 10(9) s-1 under nominal conditions (V = -60 mV, 30 microM GABA, 130 mM Na+ and room temperature). This indicates either very high levels of expression (approximately 10(4) microns-2), assuming published turnover rates (approximately 10 s-1), or turnover rates that are significantly greater than previously reported. As an alternative, a channel may exist in the GAT1 protein that is gated by GABA and Na+ and blocked by GAT1 antagonists. The channel mode of conduction would exist in addition to the coupled, fixed-stoichiometry transporter mode of conduction.
摘要
  1. 用含有T7 RNA聚合酶基因的重组痘苗病毒感染HeLa细胞,并将大鼠γ-氨基丁酸转运体GAT1的cDNA转染到细胞中,该cDNA克隆于T7 RNA聚合酶启动子的下游。转染后6至16小时,在-90至50 mV范围内进行电压斜坡的全细胞记录,结果显示存在γ-氨基丁酸诱导的电流(室温下转染16小时后,在100μMγ-氨基丁酸中,-60 mV时约为-100 pA)。在亲本HeLa细胞或 mock转染细胞中未观察到γ-氨基丁酸诱导的电流。2. 用无γ-氨基丁酸的溶液进行细胞外灌注或添加GAT1抑制剂SKF89976 - A或SKF100330 - A可抑制γ-氨基丁酸诱导的电流。在固定电压下,内向电流对γ-氨基丁酸的依赖性符合米氏方程,希尔系数n接近1,平衡常数K(m)接近3μM。内向电流对Na +的依赖性符合米氏方程,n约等于2,K(m)约等于10 mM。γ-氨基丁酸和Na +的常数n和K(m)在-90至-30 mV范围内与电压无关。3. γ-氨基丁酸诱导的电流在5 - 10 mV范围内反转方向。该结果表明,GAT1可根据膜电压介导γ-氨基丁酸的生电(电泳)内流或外流。我们实验中存在外向电流与来自重封小泡研究的放射性标记通量数据一致。然而,这与使用相同克隆的蛙卵母细胞表达实验结果不一致。在卵母细胞中,GAT1在类似电压范围内不产生外向电流。哺乳动物表达系统中较小的细胞内体积或较高的周转率可能解释了外向电流的产生。4. 细胞外γ-氨基丁酸诱导内向电流,细胞内γ-氨基丁酸诱导外向电流。然而,在最初没有细胞内γ-氨基丁酸的细胞中,细胞外γ-氨基丁酸也可促进外向电流。这种GAT1介导的外向电流仅在对细胞施加负电位后出现。这些数据与以下概念一致:负电位驱使γ-氨基丁酸和Na +进入细胞,然后在正电压下通过GAT1导致生电外流。5. 假设存在协同转运,我们估计在标称条件下(V = -60 mV,30μMγ-氨基丁酸,130 mM Na +,室温),转运体数量N乘以周转率r为Nr约10(9) s-1。这表明要么表达水平非常高(约10(4)μm-2),假设已发表的周转率(约10 s-1),要么周转率明显高于先前报道。另一种可能是,GAT1蛋白中可能存在一个通道,该通道由γ-氨基丁酸和Na +门控,并被GAT1拮抗剂阻断。除了协同的、固定化学计量的转运体传导模式外,还可能存在通道传导模式。

相似文献

1
Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells.
J Physiol. 1996 Feb 1;490 ( Pt 3)(Pt 3):691-702. doi: 10.1113/jphysiol.1996.sp021178.
3
GAT1 (GABA:Na+:Cl-) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches.
J Gen Physiol. 1999 Sep;114(3):445-57. doi: 10.1085/jgp.114.3.445.
4
Ions required for the electrogenic transport of GABA by horizontal cells of the catfish retina.
J Physiol. 1993 Dec;472:81-102. doi: 10.1113/jphysiol.1993.sp019938.
5
Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1.
J Biol Chem. 2000 Dec 1;275(48):37414-22. doi: 10.1074/jbc.M007241200.
7
GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model.
J Gen Physiol. 1999 Sep;114(3):459-75. doi: 10.1085/jgp.114.3.459.
9
GAT-1 and reversible GABA transport in Bergmann glia in slices.
J Neurophysiol. 2002 Sep;88(3):1407-19. doi: 10.1152/jn.2002.88.3.1407.

引用本文的文献

1
Current knowledge of SLC6A1-related neurodevelopmental disorders.
Brain Commun. 2020 Oct 13;2(2):fcaa170. doi: 10.1093/braincomms/fcaa170. eCollection 2020.
2
Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.
Plant Cell. 2018 May;30(5):1147-1164. doi: 10.1105/tpc.17.00864. Epub 2018 Apr 4.
3
Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters.
Pharmacol Rev. 2016 Oct;68(4):888-953. doi: 10.1124/pr.115.012260.
4
The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter.
Neurochem Res. 2016 Mar;41(3):593-9. doi: 10.1007/s11064-015-1699-6. Epub 2015 Aug 25.
5
Evidence for a Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.
J Membr Biol. 2015 Aug;248(4):795-810. doi: 10.1007/s00232-015-9797-6. Epub 2015 Apr 1.
6
Structure, function, and plasticity of GABA transporters.
Front Cell Neurosci. 2014 Jun 17;8:161. doi: 10.3389/fncel.2014.00161. eCollection 2014.
7
Inhibition of Activity of GABA Transporter GAT1 by δ-Opioid Receptor.
Evid Based Complement Alternat Med. 2012;2012:818451. doi: 10.1155/2012/818451. Epub 2012 Dec 25.
8
Inhibitors of the gamma-aminobutyric acid transporter 1 (GAT1) do not reveal a channel mode of conduction.
Neurochem Int. 2009 Dec;55(8):732-40. doi: 10.1016/j.neuint.2009.07.005. Epub 2009 Jul 19.

本文引用的文献

1
CARRIER MODEL FOR ACTIVE TRANSPORT OF IONS ACROSS A MOSAIC MEMBRANE.
Biophys J. 1964 Nov;4(6):421-40. doi: 10.1016/s0006-3495(64)86793-x.
3
Nonvesicular release of neurotransmitter.
Neuron. 1993 Sep;11(3):401-7. doi: 10.1016/0896-6273(93)90145-h.
4
Neurotransmitter transporters: recent progress.
Annu Rev Neurosci. 1993;16:73-93. doi: 10.1146/annurev.ne.16.030193.000445.
5
Neurotransmitter transporters.
Curr Opin Neurobiol. 1994 Jun;4(3):353-9. doi: 10.1016/0959-4388(94)90096-5.
6
Molecular physiology of norepinephrine and serotonin transporters.
J Exp Biol. 1994 Nov;196:263-81. doi: 10.1242/jeb.196.1.263.
7
An excitatory amino-acid transporter with properties of a ligand-gated chloride channel.
Nature. 1995 Jun 15;375(6532):599-603. doi: 10.1038/375599a0.
9
A GABA transporter operates asymmetrically and with variable stoichiometry.
Neuron. 1994 Oct;13(4):949-60. doi: 10.1016/0896-6273(94)90260-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验