Bol G H, Lagendijk J J W, Raaymakers B W
Department of Radiotherapy, University Medical Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
Phys Med Biol. 2015 Jan 21;60(2):755-68. doi: 10.1088/0031-9155/60/2/755. Epub 2015 Jan 5.
With the development of the 1.5 T MRI linear accelerator and the clinical introduction of the 0.35 T ViewRay™ system, delivering intensity-modulated radiotherapy (IMRT) in a transverse magnetic field becomes increasingly important. When delivering dose in the presence of a transverse magnetic field, one of the most prominent phenomena occurs around air cavities: the electron return effect (ERE). For stationary, spherical air cavities which are centrally located in the phantom, the ERE can be compensated by using opposing beams configurations in combination with IMRT. In this paper we investigate the effects of non-stationary spherical air cavities, centrally located within the target in a phantom containing no organs at risk, on IMRT dose delivery in 0.35 T and 1.5 T transverse magnetic fields by using Monte Carlo simulations. We show that IMRT can be used for compensating ERE around those air cavities, except for intrafraction appearing or disappearing air cavities. For these cases, gating or plan re-optimization should be used. We also analyzed the option of using IMRT plans optimized at 0 T to be delivered in the presence of 0.35 T and 1.5 T magnetic field. When delivering dose at 0.35 T, IMRT plans optimized at 0 T and 0.35 T perform equally well regarding ERE compensation. Within a 1.5 T environment, the 1.5 T optimized plans perform slightly better for the static and random intra- and interfraction air cavity movement cases than the 0 T optimized plans. For non-stationary spherical air cavities with a baseline shift (intra- and interfraction) the 0 T optimized plans perform better. These observations show the intrinsic ERE compensation by equidistant and opposing beam configurations for spherical air cavities within the target area. IMRT gives some additional compensation, but only in case of correct positioning of the air cavity according to the IMRT compensation. For intrafraction appearing or disappearing air cavities this correct positioning is absent and gating or plan re-optimization should be used.
随着1.5 T MRI直线加速器的发展以及0.35 T ViewRay™系统的临床应用,在横向磁场中进行调强放射治疗(IMRT)变得越来越重要。在横向磁场存在的情况下进行剂量输送时,最显著的现象之一发生在气腔周围:电子返回效应(ERE)。对于位于模体中心的静止球形气腔,ERE可以通过使用对穿射野配置结合IMRT来补偿。在本文中,我们通过蒙特卡罗模拟研究了位于不含危及器官的模体靶区内中心位置的非静止球形气腔对0.35 T和1.5 T横向磁场中IMRT剂量输送的影响。我们表明,IMRT可用于补偿这些气腔周围的ERE,但分次内出现或消失的气腔除外。对于这些情况,应采用门控或计划重新优化。我们还分析了使用在0 T优化的IMRT计划在0.35 T和1.5 T磁场存在的情况下进行输送的选项。在0.35 T进行剂量输送时,在0 T和0.35 T优化的IMRT计划在ERE补偿方面表现相当。在1.5 T环境中,对于静态和随机的分次内和分次间气腔移动情况,1.5 T优化计划比0 T优化计划表现略好。对于具有基线偏移(分次内和分次间)的非静止球形气腔,0 T优化计划表现更好。这些观察结果表明,对于靶区内的球形气腔,通过等距和对穿射野配置可实现内在的ERE补偿。IMRT提供了一些额外的补偿,但前提是气腔根据IMRT补偿进行了正确定位。对于分次内出现或消失的气腔,不存在这种正确定位,应采用门控或计划重新优化。