Suppr超能文献

将磁共振成像(MRI)扫描仪与6兆伏(MV)放射治疗加速器集成:表面取向对横向磁场所致入射剂量和出射剂量的影响。

Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field.

作者信息

Raaijmakers A J E, Raaymakers B W, van der Meer S, Lagendijk J J W

机构信息

Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.

出版信息

Phys Med Biol. 2007 Feb 21;52(4):929-39. doi: 10.1088/0031-9155/52/4/005. Epub 2007 Jan 22.

Abstract

At the UMC Utrecht, in collaboration with Elekta and Philips Research Hamburg, we are developing a radiotherapy accelerator with integrated MRI functionality. The radiation dose will be delivered in the presence of a lateral 1.5 T field. Although the photon beam is not affected by the magnetic field, the actual dose deposition is done by a cascade of secondary electrons and these electrons are affected by the Lorentz force. The magnetic field causes a reduced build-up distance: because the trajectory of the electrons between collisions is curved, the entrance depth in tissue decreases. Also, at tissue-air interfaces an increased dose occurs due to the so-called electron return effect (ERE): electrons leaving tissue will describe a circular path in air and re-enter the tissue yielding a local dose increase. In this paper the impact of a 1.5 T magnetic field on both the build-up distance and the dose increase due to the ERE will be investigated as a function of the angle between the surface and the incident beam. Monte Carlo simulations demonstrate that in the presence of a 1.5 T magnetic field, the surface dose, the build-up distance and the exit dose depend more heavily on the surface orientation than in the case without magnetic field. This is caused by the asymmetrical pointspread kernel in the presence of 1.5 T and the directional behaviour of the re-entering electrons. Simulations on geometrical phantoms show that ERE dose increase at air cavities can be avoided using opposing beams, also when the air-tissue boundary is not perpendicular to the beam. For the more general case in patient anatomies, more problems may arise. Future work will address the possibilities and limitations of opposing beams in combination with IMRT in a magnetic field.

摘要

在乌得勒支大学医学中心,我们与医科达公司和飞利浦汉堡研究中心合作,正在研发一款集成MRI功能的放射治疗加速器。辐射剂量将在横向1.5T磁场存在的情况下进行输送。尽管光子束不受磁场影响,但实际的剂量沉积是由一系列二次电子完成的,而这些电子会受到洛伦兹力的影响。磁场会导致积累距离缩短:因为碰撞之间电子的轨迹是弯曲的,所以在组织中的入射深度会减小。此外,在组织-空气界面处,由于所谓的电子返回效应(ERE),剂量会增加:离开组织的电子会在空气中描绘出一条圆形路径,然后重新进入组织从而导致局部剂量增加。在本文中,将研究1.5T磁场对积累距离以及由于ERE导致的剂量增加的影响,该影响是表面与入射束之间夹角的函数。蒙特卡罗模拟表明,在存在1.5T磁场的情况下,表面剂量、积累距离和出射剂量比没有磁场的情况更强烈地依赖于表面方向。这是由1.5T磁场存在时的不对称点扩展核以及重新进入电子的方向性行为引起的。对几何体模的模拟表明,即使空气-组织边界不垂直于束,使用对向束也可以避免气腔内ERE剂量增加。对于患者解剖结构中更一般的情况,可能会出现更多问题。未来的工作将探讨在磁场中对向束与调强放射治疗相结合的可能性和局限性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验