Suppr超能文献

基于斯格明子的赛道存储器中的斯格明子-斯格明子和斯格明子-边缘排斥力

Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory.

作者信息

Zhang Xichao, Zhao G P, Fangohr Hans, Liu J Ping, Xia W X, Xia J, Morvan F J

机构信息

College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China.

1] College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China [2] Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology &Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

出版信息

Sci Rep. 2015 Jan 6;5:7643. doi: 10.1038/srep07643.

Abstract

Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.

摘要

由于其稳定性、小尺寸以及移动它们所需的极低电流,磁性斯格明子在构建下一代磁存储器和自旋电子器件方面具有广阔前景。特别是,基于斯格明子的赛道存储器对信息技术具有吸引力,在这种存储器中,斯格明子被用作数据位来存储信息,而不是传统的磁畴壁。在此,我们通过数值模拟展示了斯格明子-斯格明子和斯格明子-边缘排斥对基于斯格明子的赛道存储器可行性的影响。研究了赛道上连续斯格明子位之间可靠且可行的间距以及调整该间距的能力。发现在赛道末端斯格明子位会堵塞,导致斯格明子尺寸减小。此外,我们展示了一种有效且简单的方法来避免斯格明子位的堵塞,这确保了消除超出读取元件的斯格明子位。我们的结果为未来基于斯格明子的赛道存储器的设计和开发提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acca/4284505/74c3cf2ab713/srep07643-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验