Gutiérrez L, Costo R, Grüttner C, Westphal F, Gehrke N, Heinke D, Fornara A, Pankhurst Q A, Johansson C, Veintemillas-Verdaguer S, Morales M P
Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid, Spain.
Dalton Trans. 2015 Feb 21;44(7):2943-52. doi: 10.1039/c4dt03013c.
We review current synthetic routes to magnetic iron oxide nanoparticles for biomedical applications. We classify the different approaches used depending on their ability to generate magnetic particles that are either single-core (containing only one magnetic core, i.e. a single domain nanocrystal) or multi-core (containing several magnetic cores, i.e. single domain nanocrystals). The synthesis of single-core magnetic nanoparticles requires the use of surfactants during the particle generation, and careful control of the particle coating to prevent aggregation. Special attention has to be paid to avoid the presence of any toxic reagents after the synthesis if biomedical applications are intended. Several approaches exist to obtain multi-core particles based on the coating of particle aggregates; nevertheless, the production of multi-core particles with good control of the number of magnetic cores per particle, and of the degree of polydispersity of the core sizes, is still a difficult task. The control of the structure of the particles is of great relevance for biomedical applications as it has a major influence on the magnetic properties of the materials.
我们综述了用于生物医学应用的磁性氧化铁纳米颗粒的当前合成路线。我们根据生成的磁性颗粒是单核(仅包含一个磁芯,即单畴纳米晶体)还是多核(包含多个磁芯,即单畴纳米晶体)的能力对所使用的不同方法进行分类。单核磁性纳米颗粒的合成在颗粒生成过程中需要使用表面活性剂,并仔细控制颗粒涂层以防止聚集。如果打算用于生物医学应用,合成后必须特别注意避免存在任何有毒试剂。存在几种基于颗粒聚集体涂层来获得多核颗粒的方法;然而,要很好地控制每个颗粒的磁芯数量以及磁芯尺寸的多分散程度来生产多核颗粒仍然是一项艰巨的任务。颗粒结构的控制对于生物医学应用非常重要,因为它对材料的磁性有重大影响。