Suppr超能文献

ATP水解后F1-ATPase中αβ构象变化的机制:自由能模拟

Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations.

作者信息

Ito Yuko, Ikeguchi Mitsunori

机构信息

Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.

Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.

出版信息

Biophys J. 2015 Jan 6;108(1):85-97. doi: 10.1016/j.bpj.2014.11.1853.

Abstract

One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.

摘要

F1 - ATP酶旋转的动力之一是催化活性β亚基的构象变化,这分别是由ATP结合和水解引起的闭合和开放运动所致。闭合运动分两步完成:ATP周围的氢键网络发生变化,然后整个结构通过B - 螺旋滑动而改变,正如我们之前的研究所显示的那样。在此,我们结合推挤弹性带方法和伞形采样分子动力学模拟,使用全原子自由能模拟研究了ATP水解诱导的开放运动。由于水解需要α亚基中的残基,因此模拟是在αβ二聚体上进行的。结果表明,大规模的开放运动也是通过B - 螺旋滑动(沿相反方向)实现的。然而,滑动机制与ATP结合时不同,因为滑动是由水解产物ADP和Pi的分离触发的。我们还解决了几个重要问题:1)产物Pi释放的时机;2)未解决的半闭合β结构;3)ADP释放机制。这些问题对于马达功能至关重要;因此,通过这项αβ研究也阐明了整个F1 - ATP酶的旋转机制。在构象变化过程中,ATP酶蛋白中的保守残基发挥着重要作用,这表明所获得的机制可能与其他ATP酶蛋白共有。当与我们之前的研究相结合时,这些结果提供了驱动ATP酶的β亚基构象变化的全面视图。

相似文献

5
Phosphate release coupled to rotary motion of F1-ATPase.磷酸根释放与 F1-ATP 酶的旋转运动相偶联。
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16468-73. doi: 10.1073/pnas.1305497110. Epub 2013 Sep 23.
8
Determination of the partial reactions of rotational catalysis in F1-ATPase.F1-ATP酶中旋转催化部分反应的测定
Biochemistry. 2007 Jul 31;46(30):8785-97. doi: 10.1021/bi700610m. Epub 2007 Jul 10.

引用本文的文献

3
Prediction of perturbed proton transfer networks.预测扰动质子转移网络。
PLoS One. 2018 Dec 12;13(12):e0207718. doi: 10.1371/journal.pone.0207718. eCollection 2018.
4
Multiscale molecular dynamics simulations of rotary motor proteins.旋转马达蛋白的多尺度分子动力学模拟
Biophys Rev. 2018 Apr;10(2):605-615. doi: 10.1007/s12551-017-0373-4. Epub 2017 Dec 4.

本文引用的文献

1
ATP Synthesis by Rotary Catalysis (Nobel lecture).通过旋转催化进行ATP合成(诺贝尔演讲)。
Angew Chem Int Ed Engl. 1998 Sep 18;37(17):2308-2319. doi: 10.1002/(SICI)1521-3773(19980918)37:17<2308::AID-ANIE2308>3.0.CO;2-W.
2
Chemomechanical coupling of human mitochondrial F1-ATPase motor.人线粒体 F1-ATP 酶马达的化学机械偶联。
Nat Chem Biol. 2014 Nov;10(11):930-6. doi: 10.1038/nchembio.1635. Epub 2014 Sep 21.
6
Phosphate release coupled to rotary motion of F1-ATPase.磷酸根释放与 F1-ATP 酶的旋转运动相偶联。
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16468-73. doi: 10.1073/pnas.1305497110. Epub 2013 Sep 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验