Suppr超能文献

使用图像块数据库进行低剂量CT图像重建

Low dose CT image restoration using a database of image patches.

作者信息

Ha Sungsoo, Mueller Klaus

机构信息

Center of Visual Computing, Computer Science Department, Stony Brook University, Stony Brook, New York 11794-4400, and SUNY Korea, Incheon, Korea.

出版信息

Phys Med Biol. 2015 Jan 21;60(2):869-82. doi: 10.1088/0031-9155/60/2/869. Epub 2015 Jan 7.

Abstract

Reducing the radiation dose in CT imaging has become an active research topic and many solutions have been proposed to remove the significant noise and streak artifacts in the reconstructed images. Most of these methods operate within the domain of the image that is subject to restoration. This, however, poses limitations on the extent of filtering possible. We advocate to take into consideration the vast body of external knowledge that exists in the domain of already acquired medical CT images, since after all, this is what radiologists do when they examine these low quality images. We can incorporate this knowledge by creating a database of prior scans, either of the same patient or a diverse corpus of different patients, to assist in the restoration process. Our paper follows up on our previous work that used a database of images. Using images, however, is challenging since it requires tedious and error prone registration and alignment. Our new method eliminates these problems by storing a diverse set of small image patches in conjunction with a localized similarity matching scheme. We also empirically show that it is sufficient to store these patches without anatomical tags since their statistics are sufficiently strong to yield good similarity matches from the database and as a direct effect, produce image restorations of high quality. A final experiment demonstrates that our global database approach can recover image features that are difficult to preserve with conventional denoising approaches.

摘要

降低CT成像中的辐射剂量已成为一个活跃的研究课题,人们提出了许多解决方案来去除重建图像中显著的噪声和条纹伪影。这些方法大多在需要恢复的图像领域内进行操作。然而,这对可能的滤波范围造成了限制。我们主张考虑已获取的医学CT图像领域中存在的大量外部知识,毕竟,放射科医生在检查这些低质量图像时就是这样做的。我们可以通过创建一个先前扫描的数据库来整合这些知识,该数据库可以是同一患者的,也可以是不同患者的不同语料库,以协助恢复过程。我们的论文延续了我们之前使用图像数据库的工作。然而,使用图像具有挑战性,因为它需要繁琐且容易出错的配准和对齐。我们的新方法通过结合局部相似性匹配方案存储各种小图像块来消除这些问题。我们还通过实验表明,存储这些没有解剖标签的图像块就足够了,因为它们的统计数据足够强大,能够从数据库中产生良好的相似性匹配,并且直接产生高质量的图像恢复效果。最后一个实验表明,我们的全局数据库方法可以恢复传统去噪方法难以保留的图像特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验