Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada.
Am J Physiol Cell Physiol. 2018 Feb 1;314(2):C177-C190. doi: 10.1152/ajpcell.00174.2017. Epub 2017 Nov 1.
Protein arginine methyltransferase 1 (PRMT1), PRMT4, and PRMT5 catalyze the methylation of arginine residues on target proteins. Previous work suggests that these enzymes regulate skeletal muscle plasticity. However, the function of PRMTs during disuse-induced muscle remodeling is unknown. The purpose of our study was to determine whether denervation-induced muscle disuse alters PRMT expression and activity in skeletal muscle, as well as to contextualize PRMT biology within the early disuse-evoked events that precede atrophy, which remain largely undefined. Mice were subjected to 6, 12, 24, 72, or 168 h of unilateral hindlimb denervation. Muscle mass decreased by ~30% after 72 or 168 h of neurogenic disuse, depending on muscle fiber type composition. The expression, localization, and activities of PRMT1, PRMT4, and PRMT5 were modified, exhibiting changes in gene expression and activity that were PRMT-specific. Rapid alterations in canonical muscle atrophy signaling such as forkhead box protein O1, muscle RING-finger protein-1, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) content, AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase, were observed before measurable decrements in muscle mass. Denervation-induced modifications in AMPK-PRMT1 and PGC-1α-PRMT1 binding revealed a novel, putative PRMT1-AMPK-PGC-1α signaling axis in skeletal muscle. Here, PGC-1α-PRMT1 binding was elevated after 6 h of disuse, whereas AMPK-PRMT1 interactions were reduced following 168 h of denervation. Our data suggest that PRMT biology is integral to the mechanisms that precede and initiate skeletal muscle atrophy during conditions of neurogenic disuse. This study furthers our understanding of the role of PRMTs in governing skeletal muscle plasticity.
精氨酸甲基转移酶 1(PRMT1)、PRMT4 和 PRMT5 催化靶蛋白精氨酸残基的甲基化。先前的工作表明,这些酶调节骨骼肌的可塑性。然而,在失用引起的肌肉重塑过程中 PRMTs 的功能尚不清楚。我们的研究目的是确定去神经诱导的肌肉失用是否会改变骨骼肌中 PRMT 的表达和活性,以及将 PRMT 生物学置于在萎缩之前发生的、在很大程度上尚未定义的早期失用诱发事件的背景下。将小鼠进行单侧后肢去神经支配 6、12、24、72 或 168 小时。神经源性失用 72 或 168 小时后,肌肉质量下降约 30%,具体取决于肌纤维类型组成。PRMT1、PRMT4 和 PRMT5 的表达、定位和活性发生改变,表现出特定于 PRMT 的基因表达和活性变化。快速改变经典的肌肉萎缩信号,如叉头框蛋白 O1、肌肉环指蛋白 1,以及过氧化物酶体增殖物激活受体-γ 共激活因子-1α(PGC-1α)含量、AMP 激活的蛋白激酶(AMPK)和 p38 丝裂原激活的蛋白激酶,在肌肉质量可测量下降之前就已经观察到。失用诱导的 AMPK-PRMT1 和 PGC-1α-PRMT1 结合的改变揭示了骨骼肌中一种新的、假定的 PRMT1-AMPK-PGC-1α 信号轴。在这里,失用 6 小时后 PGC-1α-PRMT1 结合增加,而 168 小时去神经后 AMPK-PRMT1 相互作用减少。我们的数据表明,PRMT 生物学是神经源性失用导致骨骼肌萎缩之前和启动阶段的机制的重要组成部分。本研究进一步了解了 PRMTs 在调节骨骼肌可塑性中的作用。