Suppr超能文献

一个变形人类心脏的高分辨率计算模型。

A high-resolution computational model of the deforming human heart.

作者信息

Gurev Viatcheslav, Pathmanathan Pras, Fattebert Jean-Luc, Wen Hui-Fang, Magerlein John, Gray Richard A, Richards David F, Rice J Jeremy

机构信息

Thomas J. Watson Research Center, IBM Research, 1101 Kitchawan Rd, Yorktown Heights, NY, 10598, USA,

出版信息

Biomech Model Mechanobiol. 2015 Aug;14(4):829-49. doi: 10.1007/s10237-014-0639-8. Epub 2015 Jan 8.

Abstract

Modeling of the heart ventricles is one of the most challenging tasks in soft tissue mechanics because cardiac tissue is a strongly anisotropic incompressible material with an active component of stress. In most current approaches with active force, the number of degrees of freedom (DOF) is limited by the direct method of solution of linear systems of equations. We develop a new approach for high-resolution heart models with large numbers of DOF by: (1) developing a hex-dominant finite element mixed formulation and (2) developing a Krylov subspace iterative method that is able to solve the system of linearized equations for saddle-point problems with active stress. In our approach, passive cardiac tissue is modeled as a hyperelastic, incompressible material with orthotropic properties, and mixed pressure-displacement finite elements are used to enforce incompressibility. Active stress is generated by a model with force dependence on length and velocity of muscle shortening. The ventricles are coupled to a lumped circulatory model. For efficient solution of linear systems, we use Flexible GMRES with a nonlinear preconditioner based on block matrix decomposition involving the Schur complement. Three methods for approximating the inverse of the Schur complement are evaluated: inverse of the pressure mass matrix; least squares commutators; and sparse approximate inverse. The sub-matrix corresponding to the displacement variables is preconditioned by a V-cycle of hybrid geometric-algebraic multigrid followed by correction with several iterations of GMRES preconditioned by sparse approximate inverse. The overall solver is demonstrated on a high-resolution two ventricle mesh based on a human anatomy with roughly 130 K elements and 1.7 M displacement DOF. Effectiveness of the numerical method for active contraction is shown. To the best of our knowledge, this solver is the first to efficiently model ventricular contraction using an iterative linear solver for the mesh size demonstrated and therefore opens the possibility for future very high-resolution models. In addition, several relatively simple benchmark problems are designed for a verification exercise to show that the solver is functioning properly and correctly solves the underlying mathematical model. Here, the output of the newly designed solver is compared to that of the mechanics component of Chaste ('Cancer, Heart and Soft Tissue Environment'). These benchmark tests may be used by other researchers to verify their newly developed methods and codes.

摘要

心脏心室建模是软组织力学中最具挑战性的任务之一,因为心脏组织是一种具有应力主动成分的强各向异性不可压缩材料。在目前大多数考虑主动力的方法中,自由度(DOF)的数量受到线性方程组直接求解方法的限制。我们通过以下方式为具有大量自由度的高分辨率心脏模型开发了一种新方法:(1)开发一种以六面体为主的有限元混合公式,(2)开发一种Krylov子空间迭代方法,该方法能够求解具有主动应力的鞍点问题的线性化方程组。在我们的方法中,被动心脏组织被建模为具有正交各向异性特性的超弹性不可压缩材料,并使用混合压力 - 位移有限元来强制实现不可压缩性。主动应力由一个力依赖于肌肉缩短长度和速度的模型生成。心室与一个集总循环模型耦合。为了高效求解线性系统,我们使用基于涉及舒尔补的块矩阵分解的具有非线性预处理器的灵活广义最小残差法(Flexible GMRES)。评估了三种近似舒尔补逆的方法:压力质量矩阵的逆;最小二乘换位子;以及稀疏近似逆。对应于位移变量的子矩阵通过混合几何 - 代数多重网格的V循环进行预处理,随后通过由稀疏近似逆预处理的广义最小残差法(GMRES)的几次迭代进行校正。在基于人体解剖结构的具有大约13万个单元和170万个位移自由度的高分辨率双心室网格上展示了整体求解器。展示了用于主动收缩的数值方法的有效性。据我们所知,该求解器是第一个使用迭代线性求解器针对所展示的网格尺寸有效模拟心室收缩的,因此为未来的超高分辨率模型开辟了可能性。此外,设计了几个相对简单的基准问题用于验证练习,以表明求解器运行正常并正确求解基础数学模型。在这里,将新设计的求解器的输出与Chaste(“癌症、心脏和软组织环境”)的力学组件的输出进行比较。这些基准测试可供其他研究人员用于验证他们新开发的方法和代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验