Suppr超能文献

人工智能驱动的主动脉瓣狭窄个性化血流动力学多模态建模

AI-Powered Multimodal Modeling of Personalized Hemodynamics in Aortic Stenosis.

作者信息

Ozturk Caglar, Pak Daniel H, Rosalia Luca, Goswami Debkalpa, Robakowski Mary E, McKay Raymond, Nguyen Christopher T, Duncan James S, Roche Ellen T

机构信息

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.

Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.

出版信息

Adv Sci (Weinh). 2025 Feb;12(5):e2404755. doi: 10.1002/advs.202404755. Epub 2024 Dec 12.

Abstract

Aortic stenosis (AS) is the most common valvular heart disease in developed countries. High-fidelity preclinical models can improve AS management by enabling therapeutic innovation, early diagnosis, and tailored treatment planning. However, their use is currently limited by complex workflows necessitating lengthy expert-driven manual operations. Here, we propose an AI-powered computational framework for accelerated and democratized patient-specific modeling of AS hemodynamics from computed tomography (CT). First, we demonstrate that the automated meshing algorithms can generate task-ready geometries for both computational and benchtop simulations with higher accuracy and 100 times faster than existing approaches. Then, we show that the approach can be integrated with fluid-structure interaction and soft robotics models to accurately recapitulate a broad spectrum of clinical hemodynamic measurements of diverse AS patients. The efficiency and reliability of these algorithms make them an ideal complementary tool for personalized high-fidelity modeling of AS biomechanics, hemodynamics, and treatment planning.

摘要

主动脉瓣狭窄(AS)是发达国家最常见的心脏瓣膜疾病。高保真临床前模型可以通过促进治疗创新、早期诊断和定制治疗方案来改善AS的管理。然而,目前其应用受到复杂工作流程的限制,这些流程需要由专家驱动的冗长手动操作。在此,我们提出了一种由人工智能驱动的计算框架,用于从计算机断层扫描(CT)中加速并实现AS血流动力学的患者特异性建模民主化。首先,我们证明了自动网格划分算法能够以比现有方法更高的精度和快100倍的速度为计算模拟和台式模拟生成可用于任务的几何模型。然后,我们表明该方法可以与流固相互作用和软机器人模型相结合,以准确再现不同AS患者的广泛临床血流动力学测量结果。这些算法的效率和可靠性使其成为AS生物力学、血流动力学和治疗方案个性化高保真建模的理想补充工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8591/11791996/126b78d0816f/ADVS-12-2404755-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验