Gomulkiewicz Richard, Holt Robert D, Barfield Michael, Nuismer Scott L
School of Biological Sciences, Washington State University Pullman, WA, USA.
Department of Biology, University of Florida Gainesville, FL, USA.
Evol Appl. 2010 Mar;3(2):97-108. doi: 10.1111/j.1752-4571.2009.00117.x.
We analyze mathematical models to examine how the genetic basis of fitness affects the persistence of a population suddenly encountering a harsh environment where it would go extinct without evolution. The results are relevant for novel introductions and for an established population whose existence is threatened by a sudden change in the environment. The models span a range of genetic assumptions, including identical loci that contribute to absolute fitness, a two-locus quantitative genetic model with nonidentical loci, and a model with major and minor genes affecting a quantitative trait. We find as a general (though not universal) pattern that prospects for persistence narrow as more loci contribute to fitness, in effect because selection per locus is increasingly weakened with more loci, which can even overwhelm any initial enhancement of fitness that adding loci might provide. When loci contribute unequally to fitness, genes of small effect can significantly reduce extinction risk. Indeed, major and minor genes can interact synergistically to reduce the time needed to evolve growth. Such interactions can also increase vulnerability to extinction, depending not just on how genes interact but also on the initial genetic structure of the introduced, or newly invaded, population.
我们分析数学模型,以研究适合度的遗传基础如何影响一个突然遭遇恶劣环境的种群的持久性。如果没有进化,该种群在这种环境下将会灭绝。研究结果对于新引入的种群以及其生存受到环境突然变化威胁的已建种群具有重要意义。这些模型涵盖了一系列遗传假设,包括对绝对适合度有贡献的相同位点、具有不同位点的双位点数量遗传模型,以及一个具有影响数量性状的主基因和微基因的模型。我们发现一个普遍(尽管并非通用)的模式:随着更多位点对适合度有贡献,种群持续存在的前景会变窄,实际上是因为随着位点数量增多,每个位点的选择作用会逐渐减弱,这甚至可能超过增加位点可能带来的任何初始适合度提升。当位点对适合度的贡献不均等时,效应较小的基因能够显著降低灭绝风险。实际上,主基因和微基因可以协同作用,以减少进化出增长能力所需的时间。这种相互作用也可能增加灭绝的脆弱性,这不仅取决于基因如何相互作用,还取决于引入的或新入侵的种群的初始遗传结构。