Zeddeman Anne, Witteveen Sandra, Bart Marieke J, van Gent Marjolein, van der Heide Han G J, Heuvelman Kees J, Schouls Leo M, Mooi Frits R
Centre for Infectious Disease Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
Centre for Infectious Disease Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
J Clin Microbiol. 2015 Mar;53(3):838-46. doi: 10.1128/JCM.02995-14. Epub 2015 Jan 7.
Large outbreaks of pertussis occur despite vaccination. A first step in the analyses of outbreaks is strain typing. However, the typing of Bordetella pertussis, the causative agent of pertussis, is problematic because the available assays are insufficiently discriminatory, not unequivocal, time-consuming, and/or costly. Here, we describe a single nucleotide primer extension assay for the study of B. pertussis populations, SNPeX (single nucleotide primer extension), which addresses these problems. The assay is based on the incorporation of fluorescently labeled dideoxynucleotides (ddNTPs) at the 3' end of allele-specific poly(A)-tailed primers and subsequent analysis with a capillary DNA analyzer. Each single nucleotide polymorphism (SNP) primer has a specific length, and as a result, up to 20 SNPs can be determined in one SNPeX reaction. Importantly, PCR amplification of target DNA is not required. We selected 38 SNPeX targets from the whole-genome sequencing data of 74 B. pertussis strains collected from across the world. The SNPeX-based phylogenetic trees preserved the general tree topology of B. pertussis populations based on whole-genome sequencing, with a minor loss of details. We envisage a strategy whereby SNP types (SnpTs) are quickly identified with the SNPeX assay during an outbreak, followed by whole-genome sequencing (WGS) of a limited number of isolates representing predominant SnpTs and the incorporation of novel SNPs in the SNPeX assay. The flexibility of the SNPeX assay allows the method to evolve along with the pathogen, making it a promising method for studying outbreaks of B. pertussis and other pathogens.
尽管进行了疫苗接种,百日咳仍会大规模爆发。疫情分析的第一步是菌株分型。然而,百日咳的病原体百日咳博德特氏菌的分型存在问题,因为现有的检测方法鉴别能力不足、结果不明确、耗时且/或成本高昂。在此,我们描述了一种用于研究百日咳博德特氏菌群体的单核苷酸引物延伸检测方法——SNPeX(单核苷酸引物延伸),该方法解决了这些问题。该检测方法基于在等位基因特异性聚(A)尾引物的3'端掺入荧光标记的双脱氧核苷酸(ddNTP),随后用毛细管DNA分析仪进行分析。每个单核苷酸多态性(SNP)引物都有特定长度,因此在一次SNPeX反应中最多可确定20个SNP。重要的是,不需要对目标DNA进行PCR扩增。我们从全球收集的74株百日咳博德特氏菌的全基因组测序数据中选择了38个SNPeX靶点。基于SNPeX的系统发育树保留了基于全基因组测序的百日咳博德特氏菌群体的总体树形拓扑结构,只是细节略有丢失。我们设想了一种策略,即在疫情爆发期间通过SNPeX检测快速识别SNP类型(SnpTs),随后对代表主要SnpTs的有限数量分离株进行全基因组测序(WGS),并将新的SNP纳入SNPeX检测中。SNPeX检测的灵活性使该方法能够随着病原体的进化而发展,使其成为研究百日咳博德特氏菌和其他病原体疫情的一种有前景的方法。