Suppr超能文献

使用多模态生理传感器和大间隔无偏回归机器检测认知工作量的变化。

Detection of variations in cognitive workload using multi-modality physiological sensors and a large margin unbiased regression machine.

作者信息

Zhang Haihong, Zhu Yongwei, Maniyeri Jayachandran, Guan Cuntai

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2985-8. doi: 10.1109/EMBC.2014.6944250.

Abstract

Physiological sensor based workload estimation technology provides a real-time means for assessing cognitive workload and has a broad range of applications in cognitive ergonomics, mental health monitoring, etc. In this paper we report a study on detecting changes in workload using multi-modality physiological sensors and a novel feature extraction and classification algorithm. We conducted a cognitive workload experiment involving multiple subjects and collected an extensive data set of EEG, ECG and GSR signals. We show that the GSR signal is consistent with the variations of cognitive workload in 75% of the samples. To explore cardiac patterns in ECG that are potentially correlated with the cognitive workload process, we computed various heart-rate-variability features. To extract neuronal activity patterns in EEG related to cognitive workload, we introduced a filter bank common spatial pattern filtering technique. As there can be large variations in e.g. individual responses to the cognitive workload, we propose a large margin unbiased recursive feature extraction and regression method. Our leave-one-subject-out cross validation test shows that, using the proposed method, EEG can provide significantly better prediction of the cognitive workload variation than ECG, with 87.5% vs 62.5% in accuracy rate.

摘要

基于生理传感器的工作负荷估计技术为评估认知工作负荷提供了一种实时手段,在认知工效学、心理健康监测等领域有着广泛的应用。在本文中,我们报告了一项使用多模态生理传感器以及一种新颖的特征提取和分类算法来检测工作负荷变化的研究。我们进行了一项涉及多个受试者的认知工作负荷实验,并收集了大量的脑电图(EEG)、心电图(ECG)和皮肤电反应(GSR)信号数据集。我们发现,在75%的样本中,GSR信号与认知工作负荷的变化一致。为了探索心电图中可能与认知工作负荷过程相关的心脏模式,我们计算了各种心率变异性特征。为了提取脑电图中与认知工作负荷相关的神经元活动模式,我们引入了一种滤波器组公共空间模式滤波技术。由于例如个体对认知工作负荷的反应可能存在很大差异,我们提出了一种大间隔无偏递归特征提取和回归方法。我们的留一法交叉验证测试表明,使用所提出的方法,脑电图对认知工作负荷变化的预测明显优于心电图,准确率分别为87.5%和62.5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验