Suppr超能文献

通过混合形态纹理模型进行多参数磁共振成像前列腺癌分析

Multiparametric MRI prostate cancer analysis via a hybrid morphological-textural model.

作者信息

Cameron Andrew, Modhafar Amen, Khalvati Farzad, Lui Dorothy, Shafiee Mohammad J, Wong Alexander, Haider Masoom

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3357-60. doi: 10.1109/EMBC.2014.6944342.

Abstract

Multiparametric MRI has shown considerable promise as a diagnostic tool for prostate cancer grading. Diffusion-weighted MRI (DWI) has shown particularly strong potential for improving the delineation between cancerous and healthy tissue in the prostate gland. Current automated diagnostic methods using multiparametric MRI, however, tend to either use low-level features, which are difficult to interpret by radiologists and clinicians, or use highly subjective heuristic methods. We propose a novel strategy comprising a tumor candidate identification scheme and a hybrid textural-morphological feature model for delineating between cancerous and non-cancerous tumor candidates in the prostate gland via multiparametric MRI. Experimental results using clinical multiparametric MRI datasets show that the proposed strategy has strong potential as a diagnostic tool to aid radiologists and clinicians identify and detect prostate cancer more efficiently and effectively.

摘要

多参数磁共振成像作为前列腺癌分级的诊断工具已显示出巨大潜力。扩散加权磁共振成像(DWI)在改善前列腺癌组织与健康组织之间的边界勾勒方面显示出特别强大的潜力。然而,目前使用多参数磁共振成像的自动诊断方法往往要么使用放射科医生和临床医生难以解释的低级特征,要么使用高度主观的启发式方法。我们提出了一种新颖的策略,该策略包括一个肿瘤候选识别方案和一个混合纹理-形态学特征模型,用于通过多参数磁共振成像在前列腺中区分癌性和非癌性肿瘤候选物。使用临床多参数磁共振成像数据集的实验结果表明,所提出的策略作为一种诊断工具具有强大的潜力,可帮助放射科医生和临床医生更高效、有效地识别和检测前列腺癌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验