Shafiee Mohammad Javad, Chung Audrey G, Khalvati Farzad, Haider Masoom A, Wong Alexander
University of Waterloo, Vision and Image Processing Research Group, Waterloo, Canada.
University of Toronto, Sunnybrook Research Institute, Department of Medical Imaging, Toronto, Canada.
J Med Imaging (Bellingham). 2017 Oct;4(4):041305. doi: 10.1117/1.JMI.4.4.041305. Epub 2017 Oct 6.
While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.
虽然肺癌是男性和女性中第二大最常被诊断出的癌症形式,但足够早的诊断对患者生存率至关重要。基于成像或放射组学驱动的检测方法已被开发出来以帮助诊断医生,但很大程度上依赖于手工制作的特征,这些特征可能无法完全概括癌组织和健康组织之间的差异。最近,发现放射组学的概念被引入,即从现成的成像数据中发现自定义抽象特征。我们提出了一种基于进化深度智能的进化深度放射组学序列器发现方法。出于对患者隐私的担忧以及操作型人工智能的理念,进化深度放射组学序列器发现方法在多代中有机地进化出越来越高效的深度放射组学序列器,这些序列器能生成显著更紧凑但同样具有描述性的放射组学序列。因此,该框架提高了操作效率,并能在放射科医生的计算机上本地运行诊断,同时保持检测准确性。我们使用来自LIDC-IDRI数据集的具有病理证实诊断数据的临床肺部CT数据,将通过所提出的进化深度放射组学序列器发现框架发现的进化深度放射组学序列器(EDRS)与最先进的放射组学驱动和发现放射组学方法进行了评估。相对于以前的放射组学方法,EDRS显示出更高的灵敏度(93.42%)、特异性(82.39%)和诊断准确性(88.78%)。