Suppr超能文献

一种用于中风后康复的下肢外骨骼辅助控制器及其初步评估。

An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof.

作者信息

Murray Spencer A, Ha Kevin H, Goldfarb Michael

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4083-6. doi: 10.1109/EMBC.2014.6944521.

Abstract

This paper describes a novel controller, intended for use in a lower-limb exoskeleton, to aid gait rehabilitation in patients with hemiparesis after stroke. The controller makes use of gravity compensation, feedforward movement assistance, and reinforcement of isometric joint torques to achieve assistance without dictating the spatiotemporal nature of joint movement. The patient is allowed to self-select walking speed and is able to make trajectory adaptations to maintain balance without interference from the controller. The governing equations and the finite state machine which comprise the system are described herein. The control architecture was implemented in a lower-limb exoskeleton and a preliminary experimental assessment was conducted in which a patient with hemiparesis resulting from stroke walked with assistance from the exoskeleton. The patient exhibited improvements in fast gait speed, step length asymmetry, and stride length in each session, as measured before and after exoskeleton training, presumably as a result of using the exoskeleton.

摘要

本文介绍了一种新型控制器,旨在用于下肢外骨骼,以帮助中风后偏瘫患者进行步态康复。该控制器利用重力补偿、前馈运动辅助和等长关节扭矩增强来实现辅助,而不规定关节运动的时空特性。患者可以自行选择步行速度,并能够进行轨迹调整以保持平衡,而不受控制器的干扰。本文描述了构成该系统的控制方程和有限状态机。该控制架构在下肢外骨骼中实现,并进行了初步实验评估,一名中风后偏瘫患者在该外骨骼的辅助下行走。如外骨骼训练前后所测,患者在每次训练中快速步态速度、步长不对称性和步幅均有改善,推测这是使用外骨骼的结果。

相似文献

1
An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4083-6. doi: 10.1109/EMBC.2014.6944521.
2
An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke.
IEEE Trans Neural Syst Rehabil Eng. 2015 May;23(3):441-9. doi: 10.1109/TNSRE.2014.2346193. Epub 2014 Aug 12.
3
Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:375-380. doi: 10.1109/ICORR.2017.8009276.
4
Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):410-20. doi: 10.1109/TNSRE.2007.903930.
6
The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
J Neuroeng Rehabil. 2015 Jun 17;12:54. doi: 10.1186/s12984-015-0048-y.
8
Robot assisted gait training with active leg exoskeleton (ALEX).
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8. doi: 10.1109/TNSRE.2008.2008280.
10
A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study.
J Neuroeng Rehabil. 2020 May 6;17(1):60. doi: 10.1186/s12984-020-00690-6.

引用本文的文献

1
iP3T: an interpretable multimodal time-series model for enhanced gait phase prediction in wearable exoskeletons.
Front Neurosci. 2024 Sep 4;18:1457623. doi: 10.3389/fnins.2024.1457623. eCollection 2024.
2
Systematic framework for performance evaluation of exoskeleton actuators.
Wearable Technol. 2020 Oct 1;1:e4. doi: 10.1017/wtc.2020.5. eCollection 2020.
3
Lower extremity robotic exoskeleton devices for overground ambulation recovery in acquired brain injury-A review.
Front Neurorobot. 2023 May 25;17:1014616. doi: 10.3389/fnbot.2023.1014616. eCollection 2023.
5
Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton.
Front Neurorobot. 2020 Jun 30;14:31. doi: 10.3389/fnbot.2020.00031. eCollection 2020.
6
A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation.
Front Neurorobot. 2020 Apr 15;14:19. doi: 10.3389/fnbot.2020.00019. eCollection 2020.
7
Piecewise and unified phase variables in the control of a powered prosthetic leg.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1425-1430. doi: 10.1109/ICORR.2017.8009448.
8
Unified Phase Variables of Relative Degree Two for Human Locomotion.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6262-6267. doi: 10.1109/EMBC.2016.7592160.
9
Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury.
Top Spinal Cord Inj Rehabil. 2015 Spring;21(2):122-32. doi: 10.1310/sci2102-122. Epub 2015 Apr 12.

本文引用的文献

1
A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals.
Top Spinal Cord Inj Rehabil. 2011;17(1):25-33. doi: 10.1310/sci1701-25. Epub 2011 Jul 14.
2
Heart disease and stroke statistics--2011 update: a report from the American Heart Association.
Circulation. 2011 Feb 1;123(4):e18-e209. doi: 10.1161/CIR.0b013e3182009701. Epub 2010 Dec 15.
3
Review of control strategies for robotic movement training after neurologic injury.
J Neuroeng Rehabil. 2009 Jun 16;6:20. doi: 10.1186/1743-0003-6-20.
4
Rapid and long-term adaptations in gait symmetry following unilateral step training in people with hemiparesis.
Phys Ther. 2009 May;89(5):474-83. doi: 10.2522/ptj.20080237. Epub 2009 Mar 12.
5
Robot assisted gait training with active leg exoskeleton (ALEX).
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):2-8. doi: 10.1109/TNSRE.2008.2008280.
7
The influence of gender and age on disability following ischemic stroke: the Framingham study.
J Stroke Cerebrovasc Dis. 2003 May-Jun;12(3):119-26. doi: 10.1016/S1052-3057(03)00042-9.
8
Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):379-86. doi: 10.1109/tnsre.2007.903919.
9
Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis.
Arch Phys Med Rehabil. 2007 Jan;88(1):43-9. doi: 10.1016/j.apmr.2006.10.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验