Suppr超能文献

iP3T:一种用于增强可穿戴外骨骼步态阶段预测的可解释多模态时间序列模型。

iP3T: an interpretable multimodal time-series model for enhanced gait phase prediction in wearable exoskeletons.

作者信息

Chen Hui, Wang Xiangyang, Xiao Yang, Wu Beixian, Wang Zhuo, Liu Yao, Wang Peiyi, Chen Chunjie, Wu Xinyu

机构信息

ShenZhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.

Chinese Academy of Sciences Key Laboratory of Human-Machine-Intelligence Synergic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Front Neurosci. 2024 Sep 4;18:1457623. doi: 10.3389/fnins.2024.1457623. eCollection 2024.

Abstract

INTRODUCTION

Wearable exoskeletons assist individuals with mobility impairments, enhancing their gait and quality of life. This study presents the iP3T model, designed to optimize gait phase prediction through the fusion of multimodal time-series data.

METHODS

The iP3T model integrates data from stretch sensors, inertial measurement units (IMUs), and surface electromyography (sEMG) to capture comprehensive biomechanical and neuromuscular signals. The model's architecture leverages transformer-based attention mechanisms to prioritize crucial data points. A series of experiments were conducted on a treadmill with five participants to validate the model's performance.

RESULTS

The iP3T model consistently outperformed traditional single-modality approaches. In the post-stance phase, the model achieved an RMSE of 1.073 and an R of 0.985. The integration of multimodal data enhanced prediction accuracy and reduced metabolic cost during assisted treadmill walking.

DISCUSSION

The study highlights the critical role of each sensor type in providing a holistic understanding of the gait cycle. The attention mechanisms within the iP3T model contribute to its interpretability, allowing for effective optimization of sensor configurations and ultimately improving mobility and quality of life for individuals with gait impairments.

摘要

引言

可穿戴外骨骼助力行动不便者,改善其步态并提升生活质量。本研究介绍了iP3T模型,旨在通过融合多模态时间序列数据来优化步态阶段预测。

方法

iP3T模型整合来自拉伸传感器、惯性测量单元(IMU)和表面肌电图(sEMG)的数据,以捕捉全面的生物力学和神经肌肉信号。该模型的架构利用基于Transformer的注意力机制来优先处理关键数据点。在跑步机上对五名参与者进行了一系列实验,以验证该模型的性能。

结果

iP3T模型始终优于传统的单模态方法。在站立后期阶段,该模型的均方根误差(RMSE)为1.073,相关系数(R)为0.985。多模态数据的整合提高了预测准确性,并降低了辅助跑步机行走期间的代谢成本。

讨论

该研究强调了每种传感器类型在全面理解步态周期中的关键作用。iP3T模型中的注意力机制有助于其可解释性,从而能够有效优化传感器配置,并最终改善步态障碍者的行动能力和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11408474/f7a3a4213dfb/fnins-18-1457623-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验