Suppr超能文献

用于重症监护病房死亡风险预测建模的异质术后数据分析

Heterogeneous postsurgical data analytics for predictive modeling of mortality risks in intensive care units.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4310-4. doi: 10.1109/EMBC.2014.6944578.

Abstract

The rapid advancements of biomedical instrumentation and healthcare technology have resulted in data-rich environments in hospitals. However, the meaningful information extracted from rich datasets is limited. There is a dire need to go beyond current medical practices, and develop data-driven methods and tools that will enable and help (i) the handling of big data, (ii) the extraction of data-driven knowledge, (iii) the exploitation of acquired knowledge for optimizing clinical decisions. This present study focuses on the prediction of mortality rates in Intensive Care Units (ICU) using patient-specific healthcare recordings. It is worth mentioning that postsurgical monitoring in ICU leads to massive datasets with unique properties, e.g., variable heterogeneity, patient heterogeneity, and time asyncronization. To cope with the challenges in ICU datasets, we developed the postsurgical decision support system with a series of analytical tools, including data categorization, data pre-processing, feature extraction, feature selection, and predictive modeling. Experimental results show that the proposed data-driven methodology outperforms traditional approaches and yields better results based on the evaluation of real-world ICU data from 4000 subjects in the database. This research shows great potentials for the use of data-driven analytics to improve the quality of healthcare services.

摘要

生物医学仪器和医疗技术的快速发展,使得医院处于数据丰富的环境中。然而,从丰富的数据集中提取的有意义信息却很有限。迫切需要超越当前的医疗实践,开发数据驱动的方法和工具,以实现并帮助(i)处理大数据,(ii)提取数据驱动的知识,(iii)利用所获得的知识优化临床决策。本研究聚焦于利用患者特定的医疗记录预测重症监护病房(ICU)的死亡率。值得一提的是,ICU中的术后监测会产生具有独特属性的海量数据集,例如变量异质性、患者异质性和时间异步性。为应对ICU数据集的挑战,我们开发了具有一系列分析工具的术后决策支持系统,包括数据分类、数据预处理、特征提取、特征选择和预测建模。实验结果表明,基于对数据库中4000名受试者的真实ICU数据的评估,所提出的数据驱动方法优于传统方法,并产生了更好的结果。这项研究显示了利用数据驱动分析来提高医疗服务质量的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验