Computer Laboratory, University of Cambridge, William Gates Building, 15 JJ Thomson Ave, Cambridge, CB3 0FD, UK.
Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
Sci Rep. 2020 Dec 17;10(1):22129. doi: 10.1038/s41598-020-79142-z.
Extensive monitoring in intensive care units (ICUs) generates large quantities of data which contain numerous trends that are difficult for clinicians to systematically evaluate. Current approaches to such heterogeneity in electronic health records (EHRs) discard pertinent information. We present a deep learning pipeline that uses all uncurated chart, lab, and output events for prediction of in-hospital mortality without variable selection. Over 21,000 ICU patients and tens of thousands of variables derived from the MIMIC-III database were used to train and validate our model. Recordings in the first few hours of a patient's stay were found to be strongly predictive of mortality, outperforming models using SAPS II and OASIS scores, AUROC 0.72 and 0.76 at 24 h respectively, within just 12 h of ICU admission. Our model achieves a very strong predictive performance of AUROC 0.85 (95% CI 0.83-0.86) after 48 h. Predictive performance increases over the first 48 h, but suffers from diminishing returns, providing rationale for time-limited trials of critical care and suggesting that the timing of decision making can be optimised and individualised.
重症监护病房(ICUs)中的广泛监测会产生大量数据,其中包含许多临床医生难以系统评估的趋势。电子健康记录(EHRs)中的这种异质性目前的处理方法会丢弃相关信息。我们提出了一个深度学习管道,该管道使用所有未经整理的图表、实验室和输出事件来预测住院死亡率,而无需进行变量选择。我们使用来自 MIMIC-III 数据库的超过 21000 名 ICU 患者和数万个变量来训练和验证我们的模型。研究发现,患者入住后的头几个小时的记录对死亡率有很强的预测能力,在 ICU 入院后 12 小时内,其预测 24 小时死亡率的 AUROC 分别为 0.72 和 0.76,优于 SAPS II 和 OASIS 评分模型。我们的模型在 48 小时后达到了非常强的预测性能 AUROC 0.85(95%CI 0.83-0.86)。在最初的 48 小时内,预测性能会提高,但收益递减,这为限时进行重症监护试验提供了依据,并表明可以优化和个性化决策时间。