Suppr超能文献

SpikeGUI:通过模板匹配和在线机器学习进行快速发作间期放电注释的软件。

SpikeGUI: software for rapid interictal discharge annotation via template matching and online machine learning.

作者信息

Dauwels Justin, Cash Sydney, Westover M Brandon

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4435-8. doi: 10.1109/EMBC.2014.6944608.

Abstract

Detection of interictal discharges is a key element of interpreting EEGs during the diagnosis and management of epilepsy. Because interpretation of clinical EEG data is time-intensive and reliant on experts who are in short supply, there is a great need for automated spike detectors. However, attempts to develop general-purpose spike detectors have so far been severely limited by a lack of expert-annotated data. Huge databases of interictal discharges are therefore in great demand for the development of general-purpose detectors. Detailed manual annotation of interictal discharges is time consuming, which severely limits the willingness of experts to participate. To address such problems, a graphical user interface "SpikeGUI" was developed in our work for the purposes of EEG viewing and rapid interictal discharge annotation. "SpikeGUI" substantially speeds up the task of annotating interictal discharges using a custom-built algorithm based on a combination of template matching and online machine learning techniques. While the algorithm is currently tailored to annotation of interictal epileptiform discharges, it can easily be generalized to other waveforms and signal types.

摘要

发作间期放电的检测是癫痫诊断和管理过程中解读脑电图的关键要素。由于临床脑电图数据的解读耗时且依赖于供不应求的专家,因此对自动尖峰检测器有很大需求。然而,迄今为止,开发通用尖峰检测器的尝试因缺乏专家标注数据而受到严重限制。因此,对于通用检测器的开发而言,急需大量发作间期放电数据库。发作间期放电的详细手动标注耗时,这严重限制了专家参与的意愿。为解决此类问题,我们在工作中开发了一个图形用户界面“SpikeGUI”,用于脑电图查看和发作间期放电的快速标注。“SpikeGUI”使用基于模板匹配和在线机器学习技术相结合的定制算法,大幅加快了发作间期放电的标注任务。虽然该算法目前是针对发作间期癫痫样放电的标注量身定制的,但它可以很容易地推广到其他波形和信号类型。

相似文献

7
Machine learning for detection of interictal epileptiform discharges.机器学习在痫性放电检测中的应用。
Clin Neurophysiol. 2021 Jul;132(7):1433-1443. doi: 10.1016/j.clinph.2021.02.403. Epub 2021 Apr 21.
9
User-guided interictal spike detection.用户引导的发作间期棘波检测。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:821-4. doi: 10.1109/IEMBS.2008.4649280.

引用本文的文献

1
CLASSIFIER CASCADE TO AID IN DETECTION OF EPILEPTIFORM TRANSIENTS IN INTERICTAL EEG.用于辅助检测发作间期脑电图中癫痫样瞬变的分类器级联
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:970-974. doi: 10.1109/ICASSP.2018.8461992. Epub 2018 Sep 13.
2
EPILEPTIFORM SPIKE DETECTION VIA CONVOLUTIONAL NEURAL NETWORKS.通过卷积神经网络进行癫痫样棘波检测
Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:754-758. doi: 10.1109/ICASSP.2016.7471776. Epub 2016 May 19.
3
CLUSTERING OF INTERICTAL SPIKES BY DYNAMIC TIME WARPING AND AFFINITY PROPAGATION.基于动态时间规整和亲和传播的发作间期棘波聚类
Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:749-753. doi: 10.1109/ICASSP.2016.7471775. Epub 2016 May 19.
4
FAST AND EFFICIENT REJECTION OF BACKGROUND WAVEFORMS IN INTERICTAL EEG.发作间期脑电图中背景波形的快速高效剔除
Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:744-748. doi: 10.1109/ICASSP.2016.7471774. Epub 2016 May 19.

本文引用的文献

1
Exact Discovery of Time Series Motifs.时间序列基序的精确发现
Proc SIAM Int Conf Data Min. 2009;2009:473-484. doi: 10.1137/1.9781611972795.41.
2
Interictal spike detection using the Walsh transform.使用沃尔什变换进行发作间期棘波检测。
IEEE Trans Biomed Eng. 2004 May;51(5):868-72. doi: 10.1109/TBME.2004.826642.
5
Spike detection: a review and comparison of algorithms.尖峰检测:算法综述与比较
Clin Neurophysiol. 2002 Dec;113(12):1873-81. doi: 10.1016/s1388-2457(02)00297-3.
7
A glossary of terms most commonly used by clinical electroencephalographers.临床脑电图检查人员最常用术语词汇表。
Electroencephalogr Clin Neurophysiol. 1974 Nov;37(5):538-48. doi: 10.1016/0013-4694(74)90099-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验