Suppr超能文献

基于脑电图的隐马尔可夫模型对人类睡眠进行朴素评分。

Naive scoring of human sleep based on a hidden Markov model of the electroencephalogram.

作者信息

Yaghouby Farid, Modur Pradeep, Sunderam Sridhar

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5028-31. doi: 10.1109/EMBC.2014.6944754.

Abstract

Clinical sleep scoring involves tedious visual review of overnight polysomnograms by a human expert. Many attempts have been made to automate the process by training computer algorithms such as support vector machines and hidden Markov models (HMMs) to replicate human scoring. Such supervised classifiers are typically trained on scored data and then validated on scored out-of-sample data. Here we describe a methodology based on HMMs for scoring an overnight sleep recording without the benefit of a trained initial model. The number of states in the data is not known a priori and is optimized using a Bayes information criterion. When tested on a 22-subject database, this unsupervised classifier agreed well with human scores (mean of Cohen's kappa > 0.7). The HMM also outperformed other unsupervised classifiers (Gaussian mixture models, k-means, and linkage trees), that are capable of naive classification but do not model dynamics, by a significant margin (p < 0.05).

摘要

临床睡眠评分需要人类专家对整夜的多导睡眠图进行繁琐的视觉检查。人们已经进行了许多尝试,通过训练诸如支持向量机和隐马尔可夫模型(HMM)等计算机算法来自动执行该过程,以复制人工评分。此类监督分类器通常在已评分的数据上进行训练,然后在未包含在训练集中的已评分数据上进行验证。在此,我们描述一种基于HMM的方法,用于在没有经过训练的初始模型的情况下对整夜睡眠记录进行评分。数据中的状态数量事先未知,并使用贝叶斯信息准则进行优化。在一个包含22名受试者的数据库上进行测试时,这种无监督分类器与人工评分高度一致(科恩kappa系数的平均值> 0.7)。该HMM在性能上也显著优于其他无监督分类器(高斯混合模型、k均值和连锁树),这些分类器能够进行简单分类,但无法对动态过程进行建模(p < 0.05)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验