Suppr超能文献

使用增强输入变量对多导睡眠图中的人类睡眠进行准监督评分。

Quasi-supervised scoring of human sleep in polysomnograms using augmented input variables.

作者信息

Yaghouby Farid, Sunderam Sridhar

机构信息

Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0108, USA.

Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0108, USA.

出版信息

Comput Biol Med. 2015 Apr;59:54-63. doi: 10.1016/j.compbiomed.2015.01.012. Epub 2015 Jan 23.

Abstract

The limitations of manual sleep scoring make computerized methods highly desirable. Scoring errors can arise from human rater uncertainty or inter-rater variability. Sleep scoring algorithms either come as supervised classifiers that need scored samples of each state to be trained, or as unsupervised classifiers that use heuristics or structural clues in unscored data to define states. We propose a quasi-supervised classifier that models observations in an unsupervised manner but mimics a human rater wherever training scores are available. EEG, EMG, and EOG features were extracted in 30s epochs from human-scored polysomnograms recorded from 42 healthy human subjects (18-79 years) and archived in an anonymized, publicly accessible database. Hypnograms were modified so that: 1. Some states are scored but not others; 2. Samples of all states are scored but not for transitional epochs; and 3. Two raters with 67% agreement are simulated. A framework for quasi-supervised classification was devised in which unsupervised statistical models-specifically Gaussian mixtures and hidden Markov models--are estimated from unlabeled training data, but the training samples are augmented with variables whose values depend on available scores. Classifiers were fitted to signal features incorporating partial scores, and used to predict scores for complete recordings. Performance was assessed using Cohen's Κ statistic. The quasi-supervised classifier performed significantly better than an unsupervised model and sometimes as well as a completely supervised model despite receiving only partial scores. The quasi-supervised algorithm addresses the need for classifiers that mimic scoring patterns of human raters while compensating for their limitations.

摘要

人工睡眠评分的局限性使得计算机化方法备受青睐。评分误差可能源于人工评分者的不确定性或评分者之间的差异。睡眠评分算法要么是需要对每个状态的评分样本进行训练的监督分类器,要么是利用未评分数据中的启发式方法或结构线索来定义状态的无监督分类器。我们提出了一种准监督分类器,它以无监督方式对观测值进行建模,但在有训练分数的情况下模仿人工评分者。从42名健康人类受试者(18 - 79岁)记录的人工评分多导睡眠图中,以30秒时段提取脑电图(EEG)、肌电图(EMG)和眼电图(EOG)特征,并将其存档于一个匿名的、可公开访问的数据库中。对睡眠图进行了修改,以便:1. 对某些状态进行评分而对其他状态不评分;2. 对所有状态的样本进行评分,但不对过渡时段进行评分;3. 模拟两名一致性为67%的评分者。设计了一个准监督分类框架,其中从未标记的训练数据中估计无监督统计模型——具体为高斯混合模型和隐马尔可夫模型——但训练样本用其值取决于可用分数的变量进行扩充。将分类器拟合到包含部分分数的信号特征上,并用于预测完整记录的分数。使用科恩κ统计量评估性能。尽管只获得了部分分数,但准监督分类器的表现明显优于无监督模型,有时与完全监督模型相当。准监督算法满足了对模仿人工评分者评分模式同时弥补其局限性的分类器的需求。

相似文献

1
Quasi-supervised scoring of human sleep in polysomnograms using augmented input variables.
Comput Biol Med. 2015 Apr;59:54-63. doi: 10.1016/j.compbiomed.2015.01.012. Epub 2015 Jan 23.
2
Naive scoring of human sleep based on a hidden Markov model of the electroencephalogram.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5028-31. doi: 10.1109/EMBC.2014.6944754.
4
Iterative expert-in-the-loop classification of sleep PSG recordings using a hierarchical clustering.
J Neurosci Methods. 2019 Apr 1;317:61-70. doi: 10.1016/j.jneumeth.2019.01.013. Epub 2019 Feb 7.
5
Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements.
Int J Neural Syst. 2016 Jun;26(4):1650017. doi: 10.1142/S0129065716500179. Epub 2016 Feb 16.
6
Inter-rater reliability of sleep cyclic alternating pattern (CAP) scoring and validation of a new computer-assisted CAP scoring method.
Clin Neurophysiol. 2005 Mar;116(3):696-707. doi: 10.1016/j.clinph.2004.09.021. Epub 2004 Nov 10.
7
SegWay: A simple framework for unsupervised sleep segmentation in experimental EEG recordings.
MethodsX. 2016 Feb 21;3:144-55. doi: 10.1016/j.mex.2016.02.003. eCollection 2016.
8
Scoring accuracy of automated sleep staging from a bipolar electroocular recording compared to manual scoring by multiple raters.
Sleep Med. 2013 Nov;14(11):1199-207. doi: 10.1016/j.sleep.2013.04.022. Epub 2013 Aug 16.
9
Personalization of Automatic Sleep Scoring: How Best to Adapt Models to Personal Domains in Wearable EEG.
IEEE J Biomed Health Inform. 2024 Oct;28(10):5804-5815. doi: 10.1109/JBHI.2024.3409165. Epub 2024 Oct 3.
10
Automated sleep scoring in rats and mice using the naive Bayes classifier.
J Neurosci Methods. 2011 Oct 30;202(1):60-4. doi: 10.1016/j.jneumeth.2011.08.023. Epub 2011 Aug 22.

引用本文的文献

1
Electro-Encephalography and Electro-Oculography in Aeronautics: A Review Over the Last Decade (2010-2020).
Front Neuroergon. 2020 Dec 21;1:606719. doi: 10.3389/fnrgo.2020.606719. eCollection 2020.
2
Multi-scale ResNet and BiGRU automatic sleep staging based on attention mechanism.
PLoS One. 2022 Jun 16;17(6):e0269500. doi: 10.1371/journal.pone.0269500. eCollection 2022.
3
Identifying the Recurrence of Sleep Apnea Using A Harmonic Hidden Markov Model.
Ann Appl Stat. 2021 Sep;15(3):1171-1193. doi: 10.1214/21-AOAS1455.
4
Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data.
J R Soc Interface. 2018 Feb;15(139). doi: 10.1098/rsif.2017.0885.
5
A State Space and Density Estimation Framework for Sleep Staging in Obstructive Sleep Apnea.
IEEE Trans Biomed Eng. 2018 Jun;65(6):1201-1212. doi: 10.1109/TBME.2017.2702123. Epub 2017 May 8.
7
A Retrospective Examination of Sleep Disturbance across the Course of Bipolar Disorder.
J Sleep Disord Ther. 2015 Mar 30;4(2). doi: 10.4172/2167-0277.1000193.
8
Noninvasive dissection of mouse sleep using a piezoelectric motion sensor.
J Neurosci Methods. 2016 Feb 1;259:90-100. doi: 10.1016/j.jneumeth.2015.11.004. Epub 2015 Nov 12.

本文引用的文献

1
Sleep duration and mortality risk.
Sleep. 2014 Aug 1;37(8):1279-80. doi: 10.5665/sleep.3910.
2
Sleep duration and obesity among adolescents transitioning to adulthood: do results differ by sex?
J Pediatr. 2014 Oct;165(4):750-4. doi: 10.1016/j.jpeds.2014.06.052. Epub 2014 Jul 25.
3
Process and outcome for international reliability in sleep scoring.
Sleep Breath. 2015 Mar;19(1):191-5. doi: 10.1007/s11325-014-0990-0. Epub 2014 May 7.
4
Semi-automatic sleep EEG scoring based on the hypnospectrogram.
J Neurosci Methods. 2014 Jan 15;221:189-95.
6
Combining hidden Markov models for comparing the dynamics of multiple sleep electroencephalograms.
Stat Med. 2013 Aug 30;32(19):3342-56. doi: 10.1002/sim.5747. Epub 2013 Jan 24.
8
Classification of sleep disorders.
Neurotherapeutics. 2012 Oct;9(4):687-701. doi: 10.1007/s13311-012-0145-6.
9
The nexus of Aβ, aging, and sleep.
Sci Transl Med. 2012 Sep 5;4(150):150fs34. doi: 10.1126/scitranslmed.3004815.
10
A transition-constrained discrete hidden Markov model for automatic sleep staging.
Biomed Eng Online. 2012 Aug 21;11:52. doi: 10.1186/1475-925X-11-52.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验