Suppr超能文献

对成骨细胞和金黄色葡萄球菌增殖具有选择性行为的纳米柱状涂层。

Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation.

作者信息

Izquierdo-Barba Isabel, García-Martín José Miguel, Álvarez Rafael, Palmero Alberto, Esteban Jaime, Pérez-Jorge Concepción, Arcos Daniel, Vallet-Regí María

机构信息

Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.

IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain.

出版信息

Acta Biomater. 2015 Mar;15:20-8. doi: 10.1016/j.actbio.2014.12.023. Epub 2015 Jan 5.

Abstract

Bacterial colonization and biofilm formation on orthopedic implants is one of the worst scenarios in orthopedic surgery, in terms of both patient prognosis and healthcare costs. Tailoring the surfaces of implants at the nanoscale to actively promote bone bonding while avoiding bacterial colonization represents an interesting challenge to achieving better clinical outcomes. Herein, a Ti6Al4V alloy of medical grade has been coated with Ti nanostructures employing the glancing angle deposition technique by magnetron sputtering. The resulting surfaces have a high density of nanocolumnar structures, which exhibit strongly impaired bacterial adhesion that inhibits biofilm formation, while osteoblasts exhibit good cell response with similar behavior to the initial substrates. These results are discussed on the basis of a "lotus leaf effect" induced by the surface nanostructures and the different sizes and biological characteristics of osteoblasts and Staphylococcus aureus.

摘要

就患者预后和医疗成本而言,骨科植入物上的细菌定植和生物膜形成是骨科手术中最糟糕的情况之一。在纳米尺度上对植入物表面进行定制,以积极促进骨结合同时避免细菌定植,这对实现更好的临床结果来说是一项有趣的挑战。在此,采用磁控溅射的掠角沉积技术在医用级Ti6Al4V合金上涂覆了Ti纳米结构。所得表面具有高密度的纳米柱状结构,这些结构表现出强烈受损的细菌粘附性,可抑制生物膜形成,而成骨细胞则表现出良好的细胞反应,其行为与初始基质相似。基于表面纳米结构引发的“荷叶效应”以及成骨细胞和金黄色葡萄球菌的不同大小和生物学特性对这些结果进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验