Suppr超能文献

使用随机模拟推断单细胞基因表达机制。

Inferring single-cell gene expression mechanisms using stochastic simulation.

作者信息

Daigle Bernie J, Soltani Mohammad, Petzold Linda R, Singh Abhyudai

机构信息

Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716 and Department of Computer Science, University of California, Santa Barbara, CA 93106, USA.

出版信息

Bioinformatics. 2015 May 1;31(9):1428-35. doi: 10.1093/bioinformatics/btv007. Epub 2015 Jan 7.

Abstract

MOTIVATION

Stochastic promoter switching between transcriptionally active (ON) and inactive (OFF) states is a major source of noise in gene expression. It is often implicitly assumed that transitions between promoter states are memoryless, i.e. promoters spend an exponentially distributed time interval in each of the two states. However, increasing evidence suggests that promoter ON/OFF times can be non-exponential, hinting at more complex transcriptional regulatory architectures. Given the essential role of gene expression in all cellular functions, efficient computational techniques for characterizing promoter architectures are critically needed.

RESULTS

We have developed a novel model reduction for promoters with arbitrary numbers of ON and OFF states, allowing us to approximate complex promoter switching behavior with Weibull-distributed ON/OFF times. Using this model reduction, we created bursty Monte Carlo expectation-maximization with modified cross-entropy method ('bursty MCEM(2)'), an efficient parameter estimation and model selection technique for inferring the number and configuration of promoter states from single-cell gene expression data. Application of bursty MCEM(2) to data from the endogenous mouse glutaminase promoter reveals nearly deterministic promoter OFF times, consistent with a multi-step activation mechanism consisting of 10 or more inactive states. Our novel approach to modeling promoter fluctuations together with bursty MCEM(2) provides powerful tools for characterizing transcriptional bursting across genes under different environmental conditions.

AVAILABILITY AND IMPLEMENTATION

R source code implementing bursty MCEM(2) is available upon request.

CONTACT

absingh@udel.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

转录活跃(开启)状态和非活跃(关闭)状态之间的随机启动子切换是基因表达中噪声的主要来源。人们常常隐含地假设启动子状态之间的转换是无记忆的,即启动子在两种状态中的每一种状态下花费的时间间隔呈指数分布。然而,越来越多的证据表明启动子的开启/关闭时间可能是非指数的,这暗示着存在更复杂的转录调控结构。鉴于基因表达在所有细胞功能中的重要作用,迫切需要有效的计算技术来表征启动子结构。

结果

我们针对具有任意数量开启和关闭状态的启动子开发了一种新颖的模型简化方法,使我们能够用威布尔分布的开启/关闭时间来近似复杂的启动子切换行为。利用这种模型简化,我们创建了带有修正交叉熵方法的爆发式蒙特卡罗期望最大化算法(“爆发式MCEM(2)”),这是一种用于从单细胞基因表达数据推断启动子状态数量和配置的有效参数估计和模型选择技术。将爆发式MCEM(2)应用于内源性小鼠谷氨酰胺酶启动子的数据,揭示了几乎确定性的启动子关闭时间,这与由10个或更多非活跃状态组成的多步激活机制一致。我们用于对启动子波动进行建模的新方法与爆发式MCEM(2)一起,为表征不同环境条件下基因间的转录爆发提供了强大的工具。

可用性与实现方式

如需实现爆发式MCEM(2)的R源代码可提供。

联系方式

absingh@udel.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
Inferring single-cell gene expression mechanisms using stochastic simulation.
Bioinformatics. 2015 May 1;31(9):1428-35. doi: 10.1093/bioinformatics/btv007. Epub 2015 Jan 7.
2
Clumped-MCEM: Inference for multistep transcriptional processes.
Comput Biol Chem. 2019 Aug;81:16-20. doi: 10.1016/j.compbiolchem.2019.107092. Epub 2019 Aug 1.
3
Transcriptional processes: Models and inference.
J Bioinform Comput Biol. 2018 Oct;16(5):1850023. doi: 10.1142/S0219720018500233.
4
Accelerated maximum likelihood parameter estimation for stochastic biochemical systems.
BMC Bioinformatics. 2012 May 1;13:68. doi: 10.1186/1471-2105-13-68.
5
Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting.
J Theor Biol. 2017 May 21;421:51-70. doi: 10.1016/j.jtbi.2017.03.017. Epub 2017 Mar 21.
7
8
Stochastic simulation algorithm for gene regulatory networks with multiple binding sites.
J Comput Biol. 2015 Mar;22(3):218-26. doi: 10.1089/cmb.2014.0064. Epub 2014 Jul 7.

引用本文的文献

1
Marker genes reveal dynamic features of cell evolving processes.
Bioinform Adv. 2025 Aug 5;5(1):vbaf185. doi: 10.1093/bioadv/vbaf185. eCollection 2025.
2
Incorporating spatial diffusion into models of bursty stochastic transcription.
J R Soc Interface. 2025 Apr;22(225):20240739. doi: 10.1098/rsif.2024.0739. Epub 2025 Apr 9.
3
Transcriptional bursting dynamics in gene expression.
Front Genet. 2024 Sep 13;15:1451461. doi: 10.3389/fgene.2024.1451461. eCollection 2024.
4
Inferring transcriptional bursting kinetics from single-cell snapshot data using a generalized telegraph model.
R Soc Open Sci. 2023 Apr 5;10(4):221057. doi: 10.1098/rsos.221057. eCollection 2023 Apr.
5
c-CSN: Single-cell RNA Sequencing Data Analysis by Conditional Cell-specific Network.
Genomics Proteomics Bioinformatics. 2021 Apr;19(2):319-329. doi: 10.1016/j.gpb.2020.05.005. Epub 2021 Mar 5.
6
Enhancement of gene expression noise from transcription factor binding to genomic decoy sites.
Sci Rep. 2020 Jun 4;10(1):9126. doi: 10.1038/s41598-020-65750-2.
7
Constraining the complexity of promoter dynamics using fluctuations in gene expression.
Phys Biol. 2019 Nov 5;17(1):015001. doi: 10.1088/1478-3975/ab4e57.
8
Bayesian inference of distributed time delay in transcriptional and translational regulation.
Bioinformatics. 2020 Jan 15;36(2):586-593. doi: 10.1093/bioinformatics/btz574.
9
Maximum Caliber Can Build and Infer Models of Oscillation in a Three-Gene Feedback Network.
J Phys Chem B. 2019 Jan 17;123(2):343-355. doi: 10.1021/acs.jpcb.8b07465. Epub 2019 Jan 9.
10
Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons.
Genome Res. 2017 Nov;27(11):1783-1794. doi: 10.1101/gr.223313.117. Epub 2017 Oct 13.

本文引用的文献

1
Transient changes in intercellular protein variability identify sources of noise in gene expression.
Biophys J. 2014 Nov 4;107(9):2214-20. doi: 10.1016/j.bpj.2014.09.017.
2
Stimulus-induced modulation of transcriptional bursting in a single mammalian gene.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20563-8. doi: 10.1073/pnas.1312310110. Epub 2013 Dec 2.
3
Stochastic models of transcription: from single molecules to single cells.
Methods. 2013 Jul 15;62(1):13-25. doi: 10.1016/j.ymeth.2013.03.026. Epub 2013 Apr 1.
4
Transcriptional regulation and its misregulation in disease.
Cell. 2013 Mar 14;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014.
5
Transcriptional burst frequency and burst size are equally modulated across the human genome.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17454-9. doi: 10.1073/pnas.1213530109. Epub 2012 Oct 11.
6
Accelerated maximum likelihood parameter estimation for stochastic biochemical systems.
BMC Bioinformatics. 2012 May 1;13:68. doi: 10.1186/1471-2105-13-68.
7
Analytical distribution and tunability of noise in a model of promoter progress.
Biophys J. 2012 Mar 21;102(6):1247-57. doi: 10.1016/j.bpj.2012.02.001. Epub 2012 Mar 20.
8
Dynamic analysis of stochastic transcription cycles.
PLoS Biol. 2011 Apr;9(4):e1000607. doi: 10.1371/journal.pbio.1000607. Epub 2011 Apr 12.
9
General properties of transcriptional time series in Escherichia coli.
Nat Genet. 2011 Jun;43(6):554-60. doi: 10.1038/ng.821. Epub 2011 May 1.
10
Mammalian genes are transcribed with widely different bursting kinetics.
Science. 2011 Apr 22;332(6028):472-4. doi: 10.1126/science.1198817. Epub 2011 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验