Cordovez Juan M, Sanabria Camilo
Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá D.C., Colombia.
Departamento de Matemáticas, Universidad de los Andes, Bogotá D.C., Colombia.
Environ Health Insights. 2014 Dec 9;8(Suppl 2):43-8. doi: 10.4137/EHI.S16002. eCollection 2014.
An epidemiological network contains all the organisms involved (types) in the transmission of a parasite. The nodes of the network represent reservoirs, hosts, and vectors, while the links between the nodes represent the strength and direction of parasite movement. Networks that contain humans are of special interest because they are of concern to public health authorities. Under these circumstances, it is possible, in principle, to identify cycles (closed paths in the network) that include humans and select the ones that carry the maximum probability of human infection. The basic reproduction number R 0 in such a network gives the average number of new infections of any type after the introduction of one individual infected by any type. To obtain R 0 for complex networks, one can use the next-generation matrix (NGM) approach. Every entry in NGM will average the contribution of each link that connects two types. To tease the contribution of every cycle apart, we define the virulence as the geometric mean of the NGM entries corresponding to the links therein. This approach allows for the quantification of specific cycles of interest while it also makes the computation of the sensitivity and elasticity of the parameters easier. In this work, we compute the virulence for the transmission dynamics of Chagas disease for a typical rural area in Colombia incorporating the effect of environmental changes on the vector population size. We concluded that the highest contribution to human infection comes from humans themselves, which is a surprising and interesting result. In addition, sensitivity analysis revealed that increasing vector population size increases the risk of human infection.
一个流行病学网络包含了寄生虫传播过程中涉及的所有生物(类型)。网络中的节点代表宿主、寄主和媒介,而节点之间的链接代表寄生虫传播的强度和方向。包含人类的网络特别受关注,因为它们与公共卫生当局相关。在这种情况下,原则上有可能识别出包含人类的循环(网络中的封闭路径),并选择那些导致人类感染概率最高的循环。这种网络中的基本繁殖数R₀给出了引入一个被任何类型感染的个体后,任何类型新感染的平均数量。为了获得复杂网络的R₀,可以使用下一代矩阵(NGM)方法。NGM中的每个条目将对连接两种类型的每个链接的贡献进行平均。为了区分每个循环的贡献,我们将毒力定义为与其中链接相对应的NGM条目的几何平均值。这种方法允许对感兴趣的特定循环进行量化,同时也使参数的敏感性和弹性计算更容易。在这项工作中,我们计算了哥伦比亚一个典型农村地区恰加斯病传播动力学的毒力,纳入了环境变化对媒介种群规模的影响。我们得出结论,对人类感染贡献最大的是人类自身,这是一个令人惊讶且有趣的结果。此外,敏感性分析表明,增加媒介种群规模会增加人类感染的风险。