Matthews Stephen A, Yang Tse-Chuan
Anthropology and Demography, Faculty Director of the Geographic Information Analysis Core, Population Research Institute, Social Science Research Institute, The Pennsylvania State University.
Geographic Information Analysis Core Population Research Institute, Social Science Research Institute, The Pennsylvania State University.
Demogr Res. 2012 Mar 2;26:151-166. doi: 10.4054/DemRes.2012.26.6.
The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity in relationships between predictors and the outcome variable. A major challenge to GWR users, however, is how best to map these parameter estimates. This paper introduces a simple mapping technique that combines local parameter estimates and local t-values on one map. The resultant map can facilitate the exploration and interpretation of nonstationarity.
地理加权回归(GWR)——一种用于检验空间非平稳性的局部空间统计技术——在社会、健康和人口科学领域的应用迅速增加。GWR是一种有用的探索性分析工具,它生成一组特定位置的参数估计值,这些估计值可以进行映射和分析,以提供有关预测变量与结果变量之间关系的空间非平稳性信息。然而,GWR用户面临的一个主要挑战是如何最好地绘制这些参数估计值。本文介绍了一种简单的映射技术,该技术将局部参数估计值和局部t值合并在一张地图上。由此生成的地图有助于对非平稳性进行探索和解释。