Suppr超能文献

绘制局部统计结果:使用地理加权回归。

Mapping the results of local statistics: Using geographically weighted regression.

作者信息

Matthews Stephen A, Yang Tse-Chuan

机构信息

Anthropology and Demography, Faculty Director of the Geographic Information Analysis Core, Population Research Institute, Social Science Research Institute, The Pennsylvania State University.

Geographic Information Analysis Core Population Research Institute, Social Science Research Institute, The Pennsylvania State University.

出版信息

Demogr Res. 2012 Mar 2;26:151-166. doi: 10.4054/DemRes.2012.26.6.

Abstract

The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity in relationships between predictors and the outcome variable. A major challenge to GWR users, however, is how best to map these parameter estimates. This paper introduces a simple mapping technique that combines local parameter estimates and local t-values on one map. The resultant map can facilitate the exploration and interpretation of nonstationarity.

摘要

地理加权回归(GWR)——一种用于检验空间非平稳性的局部空间统计技术——在社会、健康和人口科学领域的应用迅速增加。GWR是一种有用的探索性分析工具,它生成一组特定位置的参数估计值,这些估计值可以进行映射和分析,以提供有关预测变量与结果变量之间关系的空间非平稳性信息。然而,GWR用户面临的一个主要挑战是如何最好地绘制这些参数估计值。本文介绍了一种简单的映射技术,该技术将局部参数估计值和局部t值合并在一张地图上。由此生成的地图有助于对非平稳性进行探索和解释。

相似文献

6
A modification to geographically weighted regression.地理加权回归的一种修正。
Int J Health Geogr. 2017 Mar 31;16(1):11. doi: 10.1186/s12942-017-0085-9.

引用本文的文献

本文引用的文献

5
Cold surge: a sudden and spatially varying threat to health?寒潮:对健康的一种突然且空间分布各异的威胁?
Sci Total Environ. 2009 May 1;407(10):3421-4. doi: 10.1016/j.scitotenv.2008.12.044. Epub 2009 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验