Siordia Carlos, Saenz Joseph, Tom Sarah E
Division of Sociomedical Sciences, Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas, USA.
Human Geogr. 2012;6(2):5-13. doi: 10.5719/hgeo.2012.62.5.
Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity-variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes.
2型糖尿病在美国正成为一个日益严重的健康问题。了解糖尿病患病率的地理差异将为管理和预防资源的分配提供依据。对糖尿病患病率相关因素的调查在很大程度上忽略了空间非平稳性在糖尿病宏观分布中可能发挥的作用。本文向读者介绍空间非平稳性的概念——统计关系中的方差是地理位置的函数。由于空间非平稳性意味着不同的预测因素对模型结果可能有不同的影响,我们利用地理加权回归来计算作为地理位置函数的糖尿病相关因素。通过这样做,我们展示了一个探索性的例子,其中糖尿病与贫困的宏观统计关系随地理位置而变化。特别是,我们提供的证据表明,在预测宏观层面的糖尿病患病率时,贫困并不总是与糖尿病呈正相关。