Steinbeck Julius A, Choi Se Joon, Mrejeru Ana, Ganat Yosif, Deisseroth Karl, Sulzer David, Mosharov Eugene V, Studer Lorenz
1] Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, New York, USA. [2] Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA.
Department of Neurology, Columbia University Medical Center, New York, New York, USA.
Nat Biotechnol. 2015 Feb;33(2):204-9. doi: 10.1038/nbt.3124. Epub 2015 Jan 12.
Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery.
最近的研究表明,在神经疾病动物模型中移植人多能干细胞(PSC)衍生的神经细胞后有行为恢复的证据。然而,对于移植物功能的潜在机制知之甚少。在此,我们使用光遗传学实时调节源自人胚胎干细胞(hESC)的中脑多巴胺能(mesDA)神经元的电生理和神经化学特性。在从损伤诱导的帕金森运动缺陷中恢复的小鼠中,光诱导的移植物活动选择性沉默迅速且可逆地重新引入了运动缺陷。多巴胺激动剂阿扑吗啡可防止运动缺陷的重新出现。这些结果表明,功能取决于移植物神经元活动和多巴胺释放。结合光遗传学、脑片电生理学和药理学方法,我们进一步表明,富含mesDA的移植物以类似于内源性mesDA神经元的方式调节宿主谷氨酸能突触传递到纹状体中等棘状神经元上。因此,光遗传学在细胞治疗中的应用可以将移植、动物行为和死后分析联系起来,以确定驱动恢复的机制。