Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; TreeFrog Therapeutics, Bât A, F-33600 Pessac, France.
TreeFrog Therapeutics, Bât A, F-33600 Pessac, France.
Neurotherapeutics. 2024 Sep;21(5):e00436. doi: 10.1016/j.neurot.2024.e00436. Epub 2024 Oct 1.
A breadth of preclinical studies now support the rationale of pluripotent stem cell-derived cell replacement therapies to alleviate motor symptoms in Parkinsonian patients. Replacement of the primary dysfunctional cell population in the disease, i.e. the A9 dopaminergic neurons, is the major focus of these therapies. To achieve this, most therapeutical approaches involve grafting single-cell suspensions of DA progenitors. However, most cells die during the transplantation process, as cells face anoïkis. One potential solution to address this challenge is to graft solid preparations, i.e. adopting a 3D format. Cryopreserving such a format remains a major hurdle and is not exempt from causing delays in the time to effect, as observed with cryopreserved single-cell DA progenitors. Here, we used a high-throughput cell-encapsulation technology coupled with bioreactors to provide a 3D culture environment enabling the directed differentiation of hiPSCs into neural microtissues. The proper patterning of these neural microtissues into a midbrain identity was confirmed using orthogonal methods, including qPCR, RNAseq, flow cytometry and immunofluorescent microscopy. The efficacy of the neural microtissues was demonstrated in a dose-dependent manner using a Parkinsonian rat model. The survival of the cells was confirmed by post-mortem histological analysis, characterised by the presence of human dopaminergic neurons projecting into the host striatum. The work reported here is the first bioproduction of a cell therapy for Parkinson's disease in a scalable bioreactor, leading to a full behavioural recovery 16 weeks after transplantation using cryopreserved 3D format.
大量的临床前研究现在支持多能干细胞衍生的细胞替代疗法的基本原理,以减轻帕金森病患者的运动症状。这些疗法的主要重点是替代疾病中主要功能失调的细胞群体,即 A9 多巴胺能神经元。为了实现这一目标,大多数治疗方法都涉及移植 DA 祖细胞的单细胞悬浮液。然而,由于细胞面临凋亡,大多数细胞在移植过程中死亡。解决这一挑战的一个潜在方法是移植实体制剂,即采用 3D 格式。冷冻保存这种格式仍然是一个主要障碍,并且不能免除在效果时间上的延迟,如冷冻保存的单细胞 DA 祖细胞所观察到的那样。在这里,我们使用高通量细胞包封技术与生物反应器相结合,提供 3D 培养环境,使 hiPSC 定向分化为神经微组织。使用正交方法(包括 qPCR、RNAseq、流式细胞术和免疫荧光显微镜)确认这些神经微组织正确地分化为中脑身份。使用帕金森病大鼠模型,以剂量依赖的方式证明了神经微组织的功效。通过死后组织学分析证实了细胞的存活,其特征是存在投射到宿主纹状体的人多巴胺能神经元。这里报道的工作是在可扩展的生物反应器中首次生产用于帕金森病的细胞治疗的生物生产,在移植后 16 周使用冷冻 3D 格式实现完全行为恢复。