Suppr超能文献

基于半监督投影模型的聚类方法对 GABA 能中间神经元进行分类。

Classifying GABAergic interneurons with semi-supervised projected model-based clustering.

机构信息

Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Boadilla del Monte 28660, Spain.

Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón 28223, Spain.

出版信息

Artif Intell Med. 2015 Sep;65(1):49-59. doi: 10.1016/j.artmed.2014.12.010. Epub 2015 Jan 2.

Abstract

OBJECTIVES

A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names. We sought to automatically classify digitally reconstructed interneuronal morphologies according to this scheme. Simultaneously, we sought to discover possible subtypes of these types that might emerge during automatic classification (clustering). We also investigated which morphometric properties were most relevant for this classification.

MATERIALS AND METHODS

A set of 118 digitally reconstructed interneuronal morphologies classified into the common basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of the world's leading neuroscientists, quantified by five simple morphometric properties of the axon and four of the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. We then removed this class information for each type separately, and applied semi-supervised clustering to those cells (keeping the others' cluster membership fixed), to assess separation from other types and look for the formation of new groups (subtypes). We performed this same experiment unlabeling the cells of two types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixture of Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performed the described experiments on three different subsets of the data, formed according to how many experts agreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least 26 (47 neurons).

RESULTS

Interneurons with more reliable type labels were classified more accurately. We classified HT cells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy, respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, and no subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette width and ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively, confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a single type also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometric properties were more relevant that dendritic ones, with the axonal polar histogram length in the [π, 2π) angle interval being particularly useful.

CONCLUSIONS

The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heterogeneous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones for distinguishing among the CB, HT, LB, and MA interneuron types.

摘要

目的

最近提出的实用方案有望成为神经元命名的有用目录。我们试图根据该方案自动对数字化重建的神经元形态进行分类。同时,我们试图发现可能在自动分类(聚类)过程中出现的这些类型的可能亚型。我们还研究了哪些形态计量学特性对这种分类最为重要。

材料和方法

一组 118 个数字化重建的神经元形态,由 42 位世界领先的神经科学家按照常见basket(CB)、马尾(HT)、大basket(LB)和 Martinotti(MA)神经元类型进行分类,通过五个简单的轴突形态计量学特性和四个树突形态计量学特性进行量化。我们为每个神经元贴上最常被专家分配的类型标签。然后,我们分别为每个类型删除此类别信息,并对这些细胞应用半监督聚类(保持其他类型的聚类成员不变),以评估与其他类型的分离并寻找新的分组(亚型)。我们对两种类型的细胞同时进行无标记,以及一种类型的一半细胞同时进行无标记,进行了相同的实验。聚类模型是一个高斯混合模型,我们对其进行了修改,以用于估计局部(每类)特征相关性。我们在三种不同的数据子集上进行了所述实验,这些子集的形成方式是根据有多少专家同意类型归属:至少 18 位专家(完整数据集)、至少 21 位专家(73 个神经元)和至少 26 位专家(47 个神经元)。

结果

具有更可靠类型标签的神经元分类更准确。我们以 100%的准确率对 HT 细胞进行了分类,以 73%的准确率对 MA 细胞进行了分类,以 56%和 58%的准确率对 CB 和 LB 细胞进行了分类。我们鉴定了 MA 型的三个亚型,CB 和 LB 型的每个亚型,以及 HT 型的没有亚型(它是一个单一的、同质的类型)。当分别对 HT、CB、LB 和 MA 类型进行无标记时,我们获得了最大(自适应)轮廓宽度和 ARI 值 1、0.83、0.79 和 0.42,这证实了形成的聚类解决方案的质量。当对单个类型进行无标记时识别出的亚型,当对两个类型同时进行无标记时也会出现,这证实了它们的有效性。与树突形态计量学特性相比,轴突形态计量学特性更为重要,特别是在[π,2π)角度间隔内的轴突极直方图长度。

结论

应用的半监督聚类方法可以在发现潜在亚型的同时准确地区分 CB、HT、LB 和 MA 神经元类型,因此对于神经元分类很有用。潜在亚型的发现表明,其中一些类型比以前认为的更具异质性。最后,与 CB、HT、LB 和 MA 神经元类型相比,轴突变量似乎比树突变量更能区分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验