Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Spain.
Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, 28223, Spain.
BMC Bioinformatics. 2018 Dec 17;19(1):511. doi: 10.1186/s12859-018-2470-1.
The challenge of classifying cortical interneurons is yet to be solved. Data-driven classification into established morphological types may provide insight and practical value.
We trained models using 217 high-quality morphologies of rat somatosensory neocortex interneurons reconstructed by a single laboratory and pre-classified into eight types. We quantified 103 axonal and dendritic morphometrics, including novel ones that capture features such as arbor orientation, extent in layer one, and dendritic polarity. We trained a one-versus-rest classifier for each type, combining well-known supervised classification algorithms with feature selection and over- and under-sampling. We accurately classified the nest basket, Martinotti, and basket cell types with the Martinotti model outperforming 39 out of 42 leading neuroscientists. We had moderate accuracy for the double bouquet, small and large basket types, and limited accuracy for the chandelier and bitufted types. We characterized the types with interpretable models or with up to ten morphometrics.
Except for large basket, 50 high-quality reconstructions sufficed to learn an accurate model of a type. Improving these models may require quantifying complex arborization patterns and finding correlates of bouton-related features. Our study brings attention to practical aspects important for neuron classification and is readily reproducible, with all code and data available online.
皮质中间神经元的分类仍是一个挑战。基于数据的分类方法可以为建立形态学类型提供深入的见解和实用价值。
我们使用单个实验室重建的 217 个高质量的大鼠感觉新皮层中间神经元形态进行了训练,这些神经元预先分为 8 种类型。我们量化了 103 个轴突和树突形态计量学参数,包括新颖的参数,这些参数可以捕捉树突的分支方向、在第 1 层的延伸以及树突极性等特征。我们为每种类型训练了一个一对一的分类器,将著名的监督分类算法与特征选择、过采样和欠采样相结合。我们准确地对 nest basket、Martinotti 和 basket 细胞类型进行了分类,其中 Martinotti 模型的性能优于 42 位领先神经科学家中的 39 位。我们对 double bouquet、small 和 large basket 类型的分类具有中等准确性,对 chandelier 和 bitufted 类型的分类准确性有限。我们使用可解释的模型或最多 10 个形态计量学参数对这些类型进行了特征描述。
除了 large basket 类型外,50 个高质量的重建足以学习到一个准确的类型模型。要改进这些模型,可能需要量化复杂的分支模式,并找到与 bouton 相关特征的相关性。我们的研究引起了人们对神经元分类中重要的实际问题的关注,并且易于重现,所有代码和数据都可以在网上获得。