Samengo Inés, Gollisch Tim
Centro Atómico Bariloche and Instituto Balseiro, 8400 San Carlos de Bariloche, Río Negro, Argentina.
J Comput Neurosci. 2013 Feb;34(1):137-61. doi: 10.1007/s10827-012-0411-y. Epub 2012 Jul 15.
The space of sensory stimuli is complex and high-dimensional. Yet, single neurons in sensory systems are typically affected by only a small subset of the vast space of all possible stimuli. A proper understanding of the input-output transformation represented by a given cell therefore requires the identification of the subset of stimuli that are relevant in shaping the neuronal response. As an extension to the commonly-used spike-triggered average, the analysis of the spike-triggered covariance matrix provides a systematic methodology to detect relevant stimuli. As originally designed, the consistency of this method is guaranteed only if stimuli are drawn from a Gaussian distribution. Here we present a geometric proof of consistency, which provides insight into the foundations of the method, in particular, into the crucial role played by the geometry of stimulus space and symmetries in the stimulus-response relation. This approach leads to a natural extension of the applicability of the spike-triggered covariance technique to arbitrary spherical or elliptic stimulus distributions. The extension only requires a subtle modification of the original prescription. Furthermore, we present a new resampling method for assessing statistical significance of identified relevant stimuli, applicable to spherical and elliptic stimulus distributions. Finally, we exemplify the modified method and compare it to other prescriptions given in the literature.
感觉刺激空间复杂且维度高。然而,感觉系统中的单个神经元通常仅受所有可能刺激的广阔空间中的一小部分子集的影响。因此,要正确理解给定细胞所代表的输入 - 输出转换,就需要识别在塑造神经元反应中相关的刺激子集。作为对常用的峰触发平均的扩展,峰触发协方差矩阵分析提供了一种检测相关刺激的系统方法。按照最初的设计,只有当刺激取自高斯分布时,该方法的一致性才能得到保证。在此,我们给出一致性的几何证明,这为该方法的基础提供了见解,特别是深入了解了刺激空间的几何结构以及刺激 - 反应关系中的对称性所起的关键作用。这种方法自然地将峰触发协方差技术的适用性扩展到任意球形或椭圆形刺激分布。这种扩展只需要对原始方法进行细微修改。此外,我们提出了一种新的重采样方法,用于评估所识别的相关刺激的统计显著性,适用于球形和椭圆形刺激分布。最后,我们举例说明改进后的方法,并将其与文献中给出的其他方法进行比较。