Suppr超能文献

琥珀酸过度生产:使用综合大肠杆菌动力学模型的计算菌株设计案例研究。

Succinate Overproduction: A Case Study of Computational Strain Design Using a Comprehensive Escherichia coli Kinetic Model.

机构信息

Department of Chemical Engineering, The Pennsylvania State University , University Park, PA , USA.

出版信息

Front Bioeng Biotechnol. 2015 Jan 5;2:76. doi: 10.3389/fbioe.2014.00076. eCollection 2014.

Abstract

Computational strain-design prediction accuracy has been the focus for many recent efforts through the selective integration of kinetic information into metabolic models. In general, kinetic model prediction quality is determined by the range and scope of genetic and/or environmental perturbations used during parameterization. In this effort, we apply the k-OptForce procedure on a kinetic model of E. coli core metabolism constructed using the Ensemble Modeling (EM) method and parameterized using multiple mutant strains data under aerobic respiration with glucose as the carbon source. Minimal interventions are identified that improve succinate yield under both aerobic and anaerobic conditions to test the fidelity of model predictions under both genetic and environmental perturbations. Under aerobic condition, k-OptForce identifies interventions that match existing experimental strategies while pointing at a number of unexplored flux re-directions such as routing glyoxylate flux through the glycerate metabolism to improve succinate yield. Many of the identified interventions rely on the kinetic descriptions that would not be discoverable by a purely stoichiometric description. In contrast, under fermentative (anaerobic) condition, k-OptForce fails to identify key interventions including up-regulation of anaplerotic reactions and elimination of competitive fermentative products. This is due to the fact that the pathways activated under anaerobic condition were not properly parameterized as only aerobic flux data were used in the model construction. This study shed light on the importance of condition-specific model parameterization and provides insight on how to augment kinetic models so as to correctly respond to multiple environmental perturbations.

摘要

计算应变设计预测精度一直是许多最近的努力的焦点,通过将动力学信息选择性地整合到代谢模型中。一般来说,动力学模型预测质量取决于在参数化过程中使用的遗传和/或环境扰动的范围和范围。在这项工作中,我们应用 k-OptForce 程序对使用集合建模 (EM) 方法构建的大肠杆菌核心代谢动力学模型进行了分析,并使用有氧呼吸条件下葡萄糖作为碳源的多个突变株数据进行了参数化。确定了最小干预措施,以提高有氧和厌氧条件下琥珀酸的产量,以测试模型在遗传和环境扰动下的预测保真度。在有氧条件下,k-OptForce 确定了与现有实验策略相匹配的干预措施,同时指出了许多未探索的通量重定向,例如将乙醛酸通量路由通过甘油酸代谢以提高琥珀酸的产量。许多确定的干预措施依赖于动力学描述,而这些描述是纯化学计量描述无法发现的。相比之下,在发酵(厌氧)条件下,k-OptForce 无法识别关键干预措施,包括调节氨营养反应和消除竞争性发酵产物。这是因为在厌氧条件下激活的途径没有被正确参数化,因为在模型构建中只使用了有氧通量数据。这项研究阐明了特定条件模型参数化的重要性,并提供了如何增强动力学模型以正确应对多种环境扰动的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5864/4283520/48a468c797ff/fbioe-02-00076-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验