Suppr超能文献

一个用于从单细胞扰动数据进行网络推断的大规模基准。

A large-scale benchmark for network inference from single-cell perturbation data.

作者信息

Chevalley Mathieu, Roohani Yusuf H, Mehrjou Arash, Leskovec Jure, Schwab Patrick

机构信息

GSK.ai, Zug, Switzerland.

ETH Zürich, Zürich, Switzerland.

出版信息

Commun Biol. 2025 Mar 11;8(1):412. doi: 10.1038/s42003-025-07764-y.

Abstract

Mapping biological mechanisms in cellular systems is a fundamental step in early-stage drug discovery that serves to generate hypotheses on what disease-relevant molecular targets may effectively be modulated by pharmacological interventions. With the advent of high-throughput methods for measuring single-cell gene expression under genetic perturbations, we now have effective means for generating evidence for causal gene-gene interactions at scale. However, evaluating the performance of network inference methods in real-world environments is challenging due to the lack of ground-truth knowledge. Moreover, traditional evaluations conducted on synthetic datasets do not reflect the performance in real-world systems. We thus introduce CausalBench, a benchmark suite revolutionizing network inference evaluation with real-world, large-scale single-cell perturbation data. CausalBench, distinct from existing benchmarks, offers biologically-motivated metrics and distribution-based interventional measures, providing a more realistic evaluation of network inference methods. An initial systematic evaluation of state-of-the-art causal inference methods using our CausalBench suite highlights how poor scalability of existing methods limits performance. Moreover, methods that use interventional information do not outperform those that only use observational data, contrary to what is observed on synthetic benchmarks. CausalBench subsequently enables the development of numerous promising methods through a community challenge, thus demonstrating its potential as a transformative tool in the field of computational biology, bridging the gap between theoretical innovation and practical application in drug discovery and disease understanding. Thus, CausalBench opens new avenues for method developers in causal network inference research, and provides to practitioners a principled and reliable way to track progress in network methods for real-world interventional data.

摘要

在细胞系统中绘制生物学机制是早期药物发现的一个基本步骤,其作用是就哪些与疾病相关的分子靶点可能通过药理学干预得到有效调节生成假设。随着在基因扰动下测量单细胞基因表达的高通量方法的出现,我们现在有了在大规模上为因果基因-基因相互作用生成证据的有效手段。然而,由于缺乏真实的知识,在现实环境中评估网络推理方法的性能具有挑战性。此外,在合成数据集上进行的传统评估并不能反映现实世界系统中的性能。因此,我们引入了CausalBench,这是一个通过真实世界的大规模单细胞扰动数据彻底改变网络推理评估的基准套件。CausalBench与现有基准不同,它提供了基于生物学的指标和基于分布的干预措施,对网络推理方法进行了更现实的评估。使用我们的CausalBench套件对最先进的因果推理方法进行的初步系统评估突出了现有方法的扩展性差如何限制了性能。此外,与在合成基准上观察到的情况相反,使用干预信息的方法并不比只使用观测数据的方法表现更好。CausalBench随后通过社区挑战促成了众多有前景的方法的开发,从而证明了其作为计算生物学领域变革性工具的潜力,弥合了药物发现和疾病理解中理论创新与实际应用之间的差距。因此,CausalBench为因果网络推理研究中的方法开发者开辟了新途径,并为从业者提供了一种有原则且可靠的方式来跟踪针对现实世界干预数据的网络方法的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd38/11897147/47c258d14aa2/42003_2025_7764_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验