Marten Juan, Delbianco Fernando, Tohme Fernando, Maguitman Ana G
Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina.
Departamento de Economía, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina.
PeerJ Comput Sci. 2025 Jun 19;11:e2964. doi: 10.7717/peerj-cs.2964. eCollection 2025.
Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters.
像推特(现称X)这样的社交媒体平台为讨论各种观点提供了一个全球性的论坛。在这项工作中,我们提出了一种用于检测在线话语中因果关系的新颖方法。我们的方法整合了多种因果推断技术,运用直接线性非高斯自回归模型(Direct-LiNGAM)、PC算法、并行因果发现算法(PCMCI)、向量自回归模型(VAR)和随机因果关系这五种因果检测方法,来分析公众情绪和话语如何随着关键事件和有影响力的人物而演变。数据集包含不同主题、情绪和现实世界事件等变量,我们试图在这些变量中检测不同频率下的因果关系。所提出的方法应用于气候变化相关的观点和数据,为洞察公众情绪、特定主题和自然灾害之间的因果关系提供了思路。这种方法为分析各种因果问题提供了一个框架。在气候变化的具体案例中,我们可以假设,关于某个特定主题的讨论激增始终先于整体情绪、攻击性程度或表达特定立场的用户比例的变化。我们还可以推测,像自然灾害以及倾向于否认气候变化的政治家上台等现实世界事件,可能会对社交媒体上的讨论产生显著影响。我们通过结合推文和气候灾害的数据集,说明了所提出的方法如何应用于研究这些问题。