Suppr超能文献

由活性粒子诱导的全网络张力波动对脂质泡沫原组织的重塑。

Remodeling of lipid-foam prototissues by network-wide tension fluctuations induced by active particles.

作者信息

Gu Andre A, Uçar Mehmet Can, Tran Peter, Prindle Arthur, Kamat Neha P, Steinkühler Jan

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.

Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.

出版信息

Nat Commun. 2025 Feb 27;16(1):2026. doi: 10.1038/s41467-025-57178-x.

Abstract

Recent advances in the field of bottom-up synthetic biology have led to the development of synthetic cells that mimic some features of real cells, such as division, protein synthesis, or DNA replication. Larger assemblies of synthetic cells may be used to form prototissues. However, existing prototissues are limited by their relatively small lateral dimensions or their lack of remodeling ability. Here, we introduce a lipid-based tissue mimetic that can be easily prepared and functionalized, consisting of a millimeter-sized "lipid-foam" with individual micrometer-sized compartments bound by lipid bilayers. We characterize the structural and mechanical properties of the lipid-foam tissue mimetic, and we demonstrate self-healing capabilities enabled by the fluidity of the lipid bilayers. Upon inclusion of bacteria in the tissue compartments, we observe that the tissue mimetic exhibits network-wide tension fluctuations driven by membrane tension generation by the swimming bacteria. Active tension fluctuations facilitate the fluidization and reorganization of the prototissue, providing a versatile platform for understanding and mimicking biological tissues.

摘要

自下而上合成生物学领域的最新进展已促使合成细胞得以发展,这些合成细胞模仿了真实细胞的一些特征,如分裂、蛋白质合成或DNA复制。更大的合成细胞组件可用于形成原始组织。然而,现有的原始组织受到其相对较小的横向尺寸或缺乏重塑能力的限制。在此,我们引入一种基于脂质的组织模拟物,它易于制备且能进行功能化,由毫米级的“脂质泡沫”组成,其中单个微米级的隔室由脂质双层包裹。我们对脂质泡沫组织模拟物的结构和力学性能进行了表征,并展示了由脂质双层的流动性实现的自我修复能力。当在组织隔室中加入细菌时,我们观察到该组织模拟物表现出由游动细菌产生的膜张力驱动的全网络张力波动。活跃的张力波动促进了原始组织的流化和重组,为理解和模拟生物组织提供了一个多功能平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f92e/11868539/7cae39cd5274/41467_2025_57178_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验