Suppr超能文献

绿藻中状态转换时光合天线的功能重排

Functional rearrangement of the light-harvesting antenna upon state transitions in a green alga.

作者信息

Wlodarczyk Lucyna M, Snellenburg Joris J, Ihalainen Janne A, van Grondelle Rienk, van Stokkum Ivo H M, Dekker Jan P

机构信息

Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.

Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.

出版信息

Biophys J. 2015 Jan 20;108(2):261-71. doi: 10.1016/j.bpj.2014.11.3470.

Abstract

State transitions in the green alga Chlamydomonas reinhardtii serve to balance excitation energy transfer to photosystem I (PSI) and to photosystem II (PSII) and possibly play a role as a photoprotective mechanism. Thus, light-harvesting complex II (LHCII) can switch between the photosystems consequently transferring more excitation energy to PSII (state 1) or to PSI (state 2) or can end up in LHCII-only domains. In this study, low-temperature (77 K) steady-state and time-resolved fluorescence measured on intact cells of Chlamydomonas reinhardtii shows that independently of the state excitation energy transfer from LHCII to PSI or to PSII occurs on two main timescales of <15 ps and ∼ 100 ps. Moreover, in state 1 almost all LHCIIs are functionally connected to PSII, whereas the transition from state 1 to a state 2 chemically locked by 0.1 M sodium fluoride leads to an almost complete functional release of LHCIIs from PSII. About 2/3 of the released LHCIIs transfer energy to PSI and ∼ 1/3 of the released LHCIIs form a component designated X-685 peaking at 685 nm that decays with time constants of 0.28 and 5.8 ns and does not transfer energy to PSI or to PSII. A less complete state 2 was obtained in cells incubated under anaerobic conditions without chemical locking. In this state about half of all LHCIIs remained functionally connected to PSII, whereas the remaining half became functionally connected to PSI or formed X-685 in similar amounts as with chemical locking. We demonstrate that X-685 originates from LHCII domains not connected to a photosystem and that its presence introduces a change in the interpretation of 77 K steady-state fluorescence emission measured upon state transitions in Chalamydomonas reinhardtii.

摘要

莱茵衣藻的状态转换有助于平衡激发能向光系统I(PSI)和光系统II(PSII)的传递,并且可能作为一种光保护机制发挥作用。因此,捕光复合物II(LHCII)可以在两个光系统之间切换,从而将更多的激发能传递给PSII(状态1)或PSI(状态2),或者最终形成仅含LHCII的区域。在本研究中,对莱茵衣藻完整细胞进行的低温(77K)稳态和时间分辨荧光测量表明,与状态无关,激发能从LHCII向PSI或PSII的传递发生在<15 ps和~100 ps这两个主要时间尺度上。此外,在状态1中,几乎所有的LHCII在功能上都与PSII相连,而从状态1向由0.1 M氟化钠化学锁定的状态2的转变导致LHCII几乎完全从PSII上功能释放。约2/3释放的LHCII将能量传递给PSI,约1/3释放的LHCII形成一个在685 nm处有峰值的名为X-685的组分,其以0.28和5.8 ns的时间常数衰减,且不向PSI或PSII传递能量。在厌氧条件下培养且无化学锁定的细胞中获得了不太完整的状态2。在这种状态下,所有LHCII中约一半在功能上仍与PSII相连,而其余一半在功能上与PSI相连或形成X-685,其数量与化学锁定时相似。我们证明X-685源自未与光系统相连的LHCII区域,并且它的存在改变了对莱茵衣藻状态转换时所测量的77K稳态荧光发射的解释。

相似文献

1
Functional rearrangement of the light-harvesting antenna upon state transitions in a green alga.
Biophys J. 2015 Jan 20;108(2):261-71. doi: 10.1016/j.bpj.2014.11.3470.
3
Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions.
Biochim Biophys Acta. 2016 Jun;1857(6):625-33. doi: 10.1016/j.bbabio.2016.03.002. Epub 2016 Mar 3.
4
CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii.
J Biol Chem. 2009 Mar 20;284(12):7777-82. doi: 10.1074/jbc.M809360200. Epub 2009 Jan 13.
5
A model for the 77K excited state dynamics in Chlamydomonas reinhardtii in state 1 and state 2.
Biochim Biophys Acta Bioenerg. 2017 Jan;1858(1):64-72. doi: 10.1016/j.bbabio.2016.10.001. Epub 2016 Oct 21.
8
Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii.
Plant Cell. 2008 Aug;20(8):2177-89. doi: 10.1105/tpc.108.059352. Epub 2008 Aug 29.
10
Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):477-82. doi: 10.1073/pnas.0509952103. Epub 2006 Jan 3.

引用本文的文献

1
Coupling of excitation energy to photochemistry in natural marine phytoplankton communities under iron stress.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2511916122. doi: 10.1073/pnas.2511916122. Epub 2025 Jul 29.
3
Oxidative Stress- and Autophagy-Inducing Effects of PSI-LHCI from in Breast Cancer Cells.
BioTech (Basel). 2022 Mar 30;11(2):9. doi: 10.3390/biotech11020009.
4
Regulation of Light Harvesting in Two Protein Phosphatases Are Involved in State Transitions.
Plant Physiol. 2020 Aug;183(4):1749-1764. doi: 10.1104/pp.20.00384. Epub 2020 Apr 23.
5
Development of fluorescence quenching in Chlamydomonas reinhardtii upon prolonged illumination at 77 K.
Photosynth Res. 2018 Sep;137(3):503-513. doi: 10.1007/s11120-018-0534-8. Epub 2018 Jun 13.
6
Adaptation of light-harvesting functions of unicellular green algae to different light qualities.
Photosynth Res. 2019 Mar;139(1-3):145-154. doi: 10.1007/s11120-018-0523-y. Epub 2018 May 28.
7
In vivo NMR as a tool for probing molecular structure and dynamics in intact Chlamydomonas reinhardtii cells.
Photosynth Res. 2018 Mar;135(1-3):227-237. doi: 10.1007/s11120-017-0412-9. Epub 2017 Jun 23.
8
The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S-M fluorescence rise.
Photosynth Res. 2016 Dec;130(1-3):193-213. doi: 10.1007/s11120-016-0243-0. Epub 2016 Mar 19.
9
Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2.
Eur Biophys J. 2016 Apr;45(3):209-17. doi: 10.1007/s00249-015-1087-9. Epub 2015 Oct 30.

本文引用的文献

1
Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):5042-7. doi: 10.1073/pnas.1322494111. Epub 2014 Mar 17.
2
State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3460-5. doi: 10.1073/pnas.1319164111. Epub 2014 Feb 18.
4
Regulation of Photosystem II.
Photosynth Res. 1992 Dec;34(3):375-85. doi: 10.1007/BF00029812.
5
Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii.
Biochim Biophys Acta. 2014 Jan;1837(1):63-72. doi: 10.1016/j.bbabio.2013.07.012. Epub 2013 Aug 6.
6
Functional compartmental modeling of the photosystems in the thylakoid membrane at 77 K.
J Phys Chem B. 2013 Sep 26;117(38):11363-71. doi: 10.1021/jp4031283. Epub 2013 Jul 30.
8
Light-harvesting in photosystem I.
Photosynth Res. 2013 Oct;116(2-3):153-66. doi: 10.1007/s11120-013-9838-x. Epub 2013 May 4.
9
Light harvesting in photosystem II.
Photosynth Res. 2013 Oct;116(2-3):251-63. doi: 10.1007/s11120-013-9824-3. Epub 2013 Apr 18.
10
Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis.
Plant Cell. 2012 Jun;24(6):2596-609. doi: 10.1105/tpc.112.095703. Epub 2012 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验