Suppr超能文献

利用不同亲本大豆种质(野生大豆,大豆育种的宝贵种质资源)对异黄酮含量进行杂种优势和配合力估计

Heterosis and combining ability estimates in isoflavone content using different parental soybean accessions: wild soybean, a valuable germplasm for soybean breeding.

作者信息

Bi Yingdong, Li Wei, Xiao Jialei, Lin Hong, Liu Ming, Liu Miao, Luan Xiaoyan, Zhang Bixian, Xie Xuejun, Guo Donglin, Lai Yongcai

机构信息

Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Northeast Forestry University Postdoctoral Programme, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Harbin, 150086, China; Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Harbin, 150086, China.

Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Harbin, 150086, China.

出版信息

PLoS One. 2015 Jan 21;10(1):e0114827. doi: 10.1371/journal.pone.0114827. eCollection 2015.

Abstract

Isoflavone, a group of secondary metabolites in soybean, is beneficial to human health. Improving isoflavone content in soybean seeds has become one of the most important breeding objectives. However, the narrow genetic base of soybean cultivars hampered crop improvement. Wild soybean is an extraordinarily important gene pool for soybean breeding. In order to select an optimal germplasm for breeding programs to increase isoflavone concentration, 36 F1 soybean progenies from different parental accessions (cultivars, wild, Semi-wild and Interspecific) with various total isoflavone (TIF) concentration (High, Middle, Low) were analyzed for their isoflavone content. Results showed that male parents, except for Cultivars, showed positive GCA effects. In particular, wild soybean had higher positive GCA effects for TIF concentration. Both MP and BP heterosis value declined in the hybrid in which male parents were wild soybean, semi-wild soybean, interspecific offspring and cultivar in turn. In general, combining ability and heterosis in hybrids which had relative higher TIF concentration level parents showed better performance than those which had lower TIF concentration level parents. These results indicated characteristics of isoflavone content were mainly governed by additive type of gene action, and wild relatives could be utilized for breeding of soybean cultivars with this trait. A promising combination was found as the best potential hybrid for isoflavone content improvement.

摘要

异黄酮是大豆中的一类次生代谢产物,对人体健康有益。提高大豆种子中的异黄酮含量已成为最重要的育种目标之一。然而,大豆品种遗传基础狭窄阻碍了作物改良。野生大豆是大豆育种极为重要的基因库。为了选择一个最佳种质用于育种计划以提高异黄酮浓度,对来自不同亲本材料(品种、野生、半野生和种间)、具有不同总异黄酮(TIF)浓度(高、中、低)的36个F1大豆后代的异黄酮含量进行了分析。结果表明,除品种外,父本表现出正向的一般配合力效应。特别是,野生大豆对TIF浓度具有较高的正向一般配合力效应。在父本依次为野生大豆、半野生大豆、种间后代和品种的杂交组合中,中亲优势和超亲优势值均下降。总体而言,亲本TIF浓度水平相对较高的杂交组合的配合力和杂种优势表现优于亲本TIF浓度水平较低的杂交组合。这些结果表明,异黄酮含量的特性主要受加性基因作用控制,野生近缘种可用于该性状大豆品种的育种。发现了一个有前景的组合,作为提高异黄酮含量的最佳潜在杂交种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ddc/4301644/00e9ef8da788/pone.0114827.g001.jpg

相似文献

2
Changes in gene expression between a soybean F1 hybrid and its parents are associated with agronomically valuable traits.
PLoS One. 2017 May 11;12(5):e0177225. doi: 10.1371/journal.pone.0177225. eCollection 2017.
3
Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China.
Food Res Int. 2020 Apr;130:108957. doi: 10.1016/j.foodres.2019.108957. Epub 2019 Dec 28.
6
Combining ability analysis of Cucurbita moschata D. in Côte d'Ivoire and classification of promising lines based on their gca effects.
PLoS One. 2024 Aug 22;19(8):e0305798. doi: 10.1371/journal.pone.0305798. eCollection 2024.
7
Effect of Origin, Seed Coat Color, and Maturity Group on Seed Isoflavones in Diverse Soybean Germplasm.
Plants (Basel). 2024 Jun 27;13(13):1774. doi: 10.3390/plants13131774.
8
Heterotic patterns in rapeseed (Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines.
Theor Appl Genet. 2007 Jun;115(1):27-34. doi: 10.1007/s00122-007-0537-x. Epub 2007 Apr 24.
10
Joint GWAS and WGCNA Identify Genes Regulating the Isoflavone Content in Soybean Seeds.
J Agric Food Chem. 2024 Aug 21;72(33):18573-18584. doi: 10.1021/acs.jafc.4c03012. Epub 2024 Aug 6.

引用本文的文献

1
Drought Tolerant Index and Heterosis Level of Soybean { (L.) Merrill} Genotypes.
Scientifica (Cairo). 2025 Mar 13;2025:1213004. doi: 10.1155/sci5/1213004. eCollection 2025.
2
Harnessing heterosis and male sterility in soybean [ (L.) Merrill]: A critical revisit.
Front Plant Sci. 2022 Oct 10;13:981768. doi: 10.3389/fpls.2022.981768. eCollection 2022.
3
Effect of Kefir on Soybean Isoflavone Aglycone Content in Soymilk Kefir.
Front Nutr. 2020 Dec 16;7:587665. doi: 10.3389/fnut.2020.587665. eCollection 2020.
4
Changes in gene expression between a soybean F1 hybrid and its parents are associated with agronomically valuable traits.
PLoS One. 2017 May 11;12(5):e0177225. doi: 10.1371/journal.pone.0177225. eCollection 2017.
5
Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm.
Sci Rep. 2017 Mar 27;7(1):439. doi: 10.1038/s41598-017-00438-8.
6
Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes.
Front Plant Sci. 2016 Jun 3;7:763. doi: 10.3389/fpls.2016.00763. eCollection 2016.

本文引用的文献

1
Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation.
New Phytol. 2003 Aug;159(2):513-519. doi: 10.1046/j.1469-8137.2003.00824.x.
2
QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields.
Ecol Evol. 2013 Jul;3(7):2150-68. doi: 10.1002/ece3.606. Epub 2013 Jun 5.
3
Progress toward understanding heterosis in crop plants.
Annu Rev Plant Biol. 2013;64:71-88. doi: 10.1146/annurev-arplant-042110-103827. Epub 2013 Feb 6.
4
Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations.
Theor Appl Genet. 2012 Oct;125(6):1353-69. doi: 10.1007/s00122-012-1944-1. Epub 2012 Aug 7.
5
Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.).
Plant Sci. 2011 Jul;181(1):14-22. doi: 10.1016/j.plantsci.2010.12.009. Epub 2011 Jan 8.
6
A brief historical overview of the past two decades of soy and isoflavone research.
J Nutr. 2010 Jul;140(7):1350S-4S. doi: 10.3945/jn.109.118315. Epub 2010 May 19.
8
Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits.
Theor Appl Genet. 2009 Oct;119(6):1069-83. doi: 10.1007/s00122-009-1109-z. Epub 2009 Jul 23.
9
Heterosis: revisiting the magic.
Trends Genet. 2007 Feb;23(2):60-6. doi: 10.1016/j.tig.2006.12.006. Epub 2006 Dec 22.
10
Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data.
Curr Opin Clin Nutr Metab Care. 2004 Nov;7(6):649-58. doi: 10.1097/00075197-200411000-00010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验