Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich , CH-8093 Zürich, Switzerland.
ACS Nano. 2015 Feb 24;9(2):1012-57. doi: 10.1021/nn506223h. Epub 2015 Jan 22.
Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today's strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.
胶体纳米晶体(NC,即结晶纳米颗粒)已成为一类重要的材料,在从医学到电子和光电设备的应用中具有巨大的潜力。今天,NC 合成方面的巨大进展促使人们对其进行了强烈的研究。现在,对于广泛的无机化合物来说,令人印象深刻的只有百分之几的窄尺寸分布、合理的形状工程、组成调制、电子掺杂和定制的表面化学已经成为可能。基于无机 NC 的光伏和发光器件的性能已经与其他最先进的材料相媲美。半导体 NC 在近红外和中红外技术方面具有独特的应用前景,因为这些技术领域可用的半导体材料很少。在纯粹的基础方面,从快速发展的原位表征和直接成像技术中可以获得对 NC 生长、化学转化和自组织的新见解。在 NC 的光物理和 NC 固体的电子性质中,不断发现新的现象。在这个纳米焦点中,我们回顾了胶体 NC 研究的最新进展,重点介绍了过去 2 年发表的最新研究工作。