Wahl Carolin B, Swisher Jordan H, Smith Peter T, Dravid Vinayak P, Mirkin Chad A
Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA.
Adv Mater. 2025 May;37(18):e2500088. doi: 10.1002/adma.202500088. Epub 2025 Mar 19.
Phase-separating nanoreactors, generated through either Dip Pen Nanolithography (DPN) or Polymer Pen Lithography (PPL) and capable of single nanoparticle formation, are compatible with almost every relevant element from the periodic table. This advance overcomes one of the most daunting limitations in high throughput materials discovery, specifically enabling the synthesis of broad swaths of the materials genome. Indeed, the platform is compatible with at least 52 metal elements of interest and almost an infinite number of combinations. In particular, it is discovered that surface-confined, attoliter-volume reactors made of polystyrene (PS) mixtures can be preloaded with metal salts spanning all but the alkali metals and subsequently transformed into single- or multi-component nanoparticles of well-defined dimensions. This is done in a three-step process, which initially involves the facilitation of precursor precipitation and localization with toluene vapor, followed by plasma treatment to remove the polymer reactor component, and then heating from 400-900 °C, depending upon precursor and desired end-state (degree of reduction and crystallinity). These phase-separating nanoreactors are used to produce metal and metal oxide nanoparticles, depending upon conditions, in a substrate-general manner.
通过浸笔纳米光刻技术(DPN)或聚合物笔光刻技术(PPL)生成的、能够形成单个纳米颗粒的相分离纳米反应器,与元素周期表中的几乎每一种相关元素都兼容。这一进展克服了高通量材料发现中最严峻的限制之一,特别能够合成大量的材料基因组。事实上,该平台与至少52种感兴趣的金属元素兼容,并且几乎有无限数量的组合。特别值得一提的是,已发现由聚苯乙烯(PS)混合物制成的表面受限的、阿托升体积的反应器可以预先装载除碱金属外的所有金属盐,随后转化为尺寸明确的单组分或多组分纳米颗粒。这一过程分三步完成,首先是利用甲苯蒸汽促进前驱体沉淀和定位,接着进行等离子体处理以去除聚合物反应器组件,然后根据前驱体和所需的最终状态(还原程度和结晶度)在400 - 900°C下加热。这些相分离纳米反应器根据条件以通用的方式用于在基底上制备金属和金属氧化物纳米颗粒。