Suppr超能文献

基于钯的质量标签细胞条形码技术,采用双峰过滤方案和单细胞反卷积算法。

Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm.

作者信息

Zunder Eli R, Finck Rachel, Behbehani Gregory K, Amir El-Ad D, Krishnaswamy Smita, Gonzalez Veronica D, Lorang Cynthia G, Bjornson Zach, Spitzer Matthew H, Bodenmiller Bernd, Fantl Wendy J, Pe'er Dana, Nolan Garry P

机构信息

Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.

1] Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA. [2] Divisions of Hematology and Oncology, Stanford University School of Medicine, Stanford, California, USA.

出版信息

Nat Protoc. 2015 Feb;10(2):316-33. doi: 10.1038/nprot.2015.020. Epub 2015 Jan 22.

Abstract

Mass-tag cell barcoding (MCB) labels individual cell samples with unique combinatorial barcodes, after which they are pooled for processing and measurement as a single multiplexed sample. The MCB method eliminates variability between samples in antibody staining and instrument sensitivity, reduces antibody consumption and shortens instrument measurement time. Here we present an optimized MCB protocol. The use of palladium-based labeling reagents expands the number of measurement channels available for mass cytometry and reduces interference with lanthanide-based antibody measurement. An error-detecting combinatorial barcoding scheme allows cell doublets to be identified and removed from the analysis. A debarcoding algorithm that is single cell-based rather than population-based improves the accuracy and efficiency of sample deconvolution. This debarcoding algorithm has been packaged into software that allows rapid and unbiased sample deconvolution. The MCB procedure takes 3-4 h, not including sample acquisition time of ∼1 h per million cells.

摘要

大规模标签细胞条形码技术(MCB)使用独特的组合条形码标记单个细胞样本,然后将它们汇集在一起作为单个多重样本进行处理和测量。MCB方法消除了抗体染色和仪器灵敏度方面样本间的变异性,减少了抗体消耗并缩短了仪器测量时间。在此,我们展示了一种优化的MCB方案。基于钯的标记试剂的使用增加了可用于质谱细胞术的测量通道数量,并减少了对基于镧系元素的抗体测量的干扰。一种错误检测组合条形码方案能够识别细胞 doublets 并将其从分析中去除。一种基于单细胞而非群体的解条形码算法提高了样本反卷积的准确性和效率。这种解条形码算法已被打包成软件,可实现快速且无偏差的样本反卷积。MCB程序耗时3 - 4小时,不包括每百万细胞约1小时的样本采集时间。

相似文献

3
A practical guide to multiplexed mass cytometry.多重质谱流式细胞术实用指南。
Curr Top Microbiol Immunol. 2014;377:95-109. doi: 10.1007/82_2013_335.

引用本文的文献

本文引用的文献

2
Automated identification of stratifying signatures in cellular subpopulations.细胞亚群分层特征的自动识别。
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2770-7. doi: 10.1073/pnas.1408792111. Epub 2014 Jun 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验