Suppr超能文献

从机器学习角度洞察肌萎缩侧索硬化症

Insights into Amyotrophic Lateral Sclerosis from a Machine Learning Perspective.

作者信息

Gordon Jonathan, Lerner Boaz

机构信息

Industrial Engineering & Management Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

出版信息

J Clin Med. 2019 Oct 1;8(10):1578. doi: 10.3390/jcm8101578.

Abstract

Amyotrophic lateral sclerosis (ALS) disease state prediction usually assumes linear progression and uses a classifier evaluated by its accuracy. Since disease progression is not linear, and the accuracy measurement cannot tell large from small prediction errors, we dispense with the linearity assumption and apply ordinal classification that accounts for error severity. In addition, we identify the most influential variables in predicting and explaining the disease. Furthermore, in contrast to conventional modeling of the patient's total functionality, we also model separate patient functionalities (e.g., in walking or speaking). Using data from 3772 patients from the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database, we introduce and train ordinal classifiers to predict patients' disease state in their last clinic visit, while accounting differently for different error severities. We use feature-selection methods and the classifiers themselves to determine the most influential variables in predicting the disease from demographic, clinical, and laboratory data collected in either the first, last, or both clinic visits, and the Bayesian network classifier to identify interrelations among these variables and their relations with the disease state. We apply these methods to model each of the patient functionalities. We show the error distribution in ALS state prediction and demonstrate that ordinal classifiers outperform classifiers that do not account for error severity. We identify clinical and lab test variables influential to prediction of different ALS functionalities and their interrelations, and specific value combinations of these variables that occur more frequently in patients with severe deterioration than in patients with mild deterioration and vice versa. Ordinal classification of ALS state is superior to conventional classification. Identification of influential ALS variables and their interrelations help explain disease mechanism. Modeling of patient functionalities separately allows relation of variables and their connections to different aspects of the disease as may be expressed in different body segments.

摘要

肌萎缩侧索硬化症(ALS)疾病状态预测通常假定为线性进展,并使用通过准确率评估的分类器。由于疾病进展并非线性,且准确率测量无法区分大小预测误差,我们摒弃线性假设,应用考虑误差严重程度的有序分类。此外,我们确定预测和解释该疾病时最具影响力的变量。再者,与对患者整体功能的传统建模不同,我们还对患者的不同功能(如行走或说话功能)进行建模。利用来自汇总资源开放获取ALS临床试验(PRO-ACT)数据库的3772名患者的数据,我们引入并训练有序分类器,以预测患者在最后一次门诊就诊时的疾病状态,同时对不同的误差严重程度进行不同的考量。我们使用特征选择方法和分类器本身,从首次、最后一次或两次门诊就诊时收集的人口统计学、临床和实验室数据中确定预测该疾病时最具影响力的变量,并使用贝叶斯网络分类器识别这些变量之间的相互关系及其与疾病状态的关系。我们应用这些方法对每个患者功能进行建模。我们展示了ALS状态预测中的误差分布,并证明有序分类器优于不考虑误差严重程度的分类器。我们确定了对不同ALS功能预测有影响的临床和实验室测试变量及其相互关系,以及这些变量的特定值组合,这些组合在病情严重恶化的患者中比在病情轻度恶化的患者中更频繁出现,反之亦然。ALS状态有序分类优于传统分类。识别有影响力的ALS变量及其相互关系有助于解释疾病机制。分别对患者功能进行建模可以揭示变量及其与疾病不同方面的联系,这些联系可能体现在不同身体部位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b51/6832919/9b14aec40b08/jcm-08-01578-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验