Mohammadi Siawoosh, Tabelow Karsten, Ruthotto Lars, Feiweier Thorsten, Polzehl Jörg, Weiskopf Nikolaus
Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK ; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany.
Stochastic Algorithms and Nonparametric Statistics, Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany.
Front Neurosci. 2015 Jan 7;8:427. doi: 10.3389/fnins.2014.00427. eCollection 2014.
Diffusion Kurtosis Imaging (DKI) is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g., intra-axonal volume fraction) than diffusion tensor imaging (DTI), offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2-3 mm isotropic), because of the lower signal-to-noise ratio (SNR) and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1 mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view (rFoV) imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic) on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH). Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS). We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e., produced incorrectly aligned images) and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK) maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution.
扩散峰度成像(DKI)对微观结构差异更为敏感,与扩散张量成像(DTI)相比,它可以与更具体的微观尺度指标(如轴突内体积分数)相关联,为白质和灰质的临床诊断和研究提供了巨大潜力。目前,由于与技术要求更高的DKI相关的信噪比(SNR)较低和伪影水平较高,DKI仅在低空间分辨率(各向同性2-3毫米)下采集。对于精细白质通路或皮质微观结构的表征,需要约1毫米的更高空间分辨率。我们使用受限视野(rFoV)成像结合先进的后处理方法,在临床3T扫描仪上实现了前所未有的高质量、高分辨率DKI(各向同性1.2毫米)。通过开发一种用于高分辨率、多壳扩散数据中的回顾性涡流和运动伪影校正的新方法(REMATCH),后处理得到了改进。此外,我们应用了一种强大的边缘保留去噪方法,称为多壳方向位置自适应平滑(msPOAS)。我们证明了高质量、高分辨率DKI的可行性及其在描绘运动皮质中高度髓鞘化纤维通路方面的潜力。即使在高分辨率DKI的低SNR水平下,标准的涡流校正和运动校正失败(即产生错误对齐的图像)从而使扩散模型拟合产生偏差时,REMATCH也能稳健地运行。我们表明,REMATCH和msPOAS的组合使平均峰度(MK)图中灰质和白质之间的对比度提高了约35%,同时保留了MK值的原始分布,而标准的高斯平滑会强烈影响分布。