Tabelow Karsten, Mohammadi Siawoosh, Weiskopf Nikolaus, Polzehl Jörg
WIAS Berlin, Mohrenstr. 39, 10117, Berlin, Germany,
Neuroinformatics. 2015 Jan;13(1):19-29. doi: 10.1007/s12021-014-9228-3.
We present an implementation of a recently developed noise reduction algorithm for dMRI data, called multi-shell position orientation adaptive smoothing (msPOAS), as a toolbox for SPM. The method intrinsically adapts to the structures of different size and shape in dMRI and hence avoids blurring typically observed in non-adaptive smoothing. We give examples for the usage of the toolbox and explain the determination of experiment-dependent parameters for an optimal performance of msPOAS.
我们展示了一种针对扩散磁共振成像(dMRI)数据的最新开发的降噪算法的实现,称为多壳位置方向自适应平滑(msPOAS),作为统计参数映射(SPM)的一个工具箱。该方法本质上能适应dMRI中不同大小和形状的结构,因此避免了在非自适应平滑中常见的模糊现象。我们给出了该工具箱的使用示例,并解释了为使msPOAS达到最佳性能而确定与实验相关的参数的方法。
Neuroinformatics. 2015-1
Neuroimage. 2008-2-15
Neuroimage. 2013-9-21
Imaging Neurosci (Camb). 2024-9-13
Neuroimage. 2019-1-21
Neuroinformatics. 2019-1
Hum Brain Mapp. 2017-11-1
Front Neurosci. 2015-11-27
Front Neurosci. 2015-1-7
Neuroimage. 2013-1-5
J Neurosci. 2012-11-14
Cereb Cortex. 2012-7-23
Med Image Anal. 2012-5-24