Cervera Javier, Manzanares Jose Antonio, Mafe Salvador
Departament de Termodinàmica, Universitat de València , E-46100 Burjassot, Spain.
J Phys Chem B. 2015 Feb 19;119(7):2968-78. doi: 10.1021/jp512900x. Epub 2015 Feb 4.
We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.
我们假设细胞膜电位是基本的个体属性,分析了非兴奋性(非神经)模型细胞的耦合。我们基于细胞膜特有的内向和外向整流电压门控通道获得此电位。我们专注于细胞群体的电耦合,而非单个细胞的生化和机械特性,使用简单假设获得单细胞电位图,并提出集体修改此空间图的程序。还分析了细胞群体对外界扰动的响应以及细胞分离、异质性和群体大小的影响。结果表明,简单的耦合机制对于模型生物分子群体的生物物理化学可能具有重要意义。特别是,单细胞电位的时空图应该与带电纳米颗粒在模型细胞群体上的摄取和分布以及包含插入脂质双层的蛋白质离子通道的液滴网络的集体特性相关。