Suppr超能文献

利用具有细胞和亚细胞分辨率的活体成像技术研究植物中的无机磷酸盐。

Live imaging of inorganic phosphate in plants with cellular and subcellular resolution.

机构信息

Department of Biology, Texas A&M University, College Station, Texas 77843.

Department of Biology, Texas A&M University, College Station, Texas 77843

出版信息

Plant Physiol. 2015 Mar;167(3):628-38. doi: 10.1104/pp.114.254003. Epub 2015 Jan 26.

Abstract

Despite variable and often scarce supplies of inorganic phosphate (Pi) from soils, plants must distribute appropriate amounts of Pi to each cell and subcellular compartment to sustain essential metabolic activities. The ability to monitor Pi dynamics with subcellular resolution in live plants is, therefore, critical for understanding how this essential nutrient is acquired, mobilized, recycled, and stored. Fluorescence indicator protein for inorganic phosphate (FLIPPi) sensors are genetically encoded fluorescence resonance energy transfer-based sensors that have been used to monitor Pi dynamics in cultured animal cells. Here, we present a series of Pi sensors optimized for use in plants. Substitution of the enhanced yellow fluorescent protein component of a FLIPPi sensor with a circularly permuted version of Venus enhanced sensor dynamic range nearly 2.5-fold. The resulting circularly permuted FLIPPi sensor was subjected to a high-efficiency mutagenesis strategy that relied on statistical coupling analysis to identify regions of the protein likely to influence Pi affinity. A series of affinity mutants was selected with dissociation constant values of 0.08 to 11 mm, which span the range for most plant cell compartments. The sensors were expressed in Arabidopsis (Arabidopsis thaliana), and ratiometric imaging was used to monitor cytosolic Pi dynamics in root cells in response to Pi deprivation and resupply. Moreover, plastid-targeted versions of the sensors expressed in the wild type and a mutant lacking the PHOSPHATE TRANSPORT4;2 plastidic Pi transporter confirmed a physiological role for this transporter in Pi export from root plastids. These circularly permuted FLIPPi sensors, therefore, enable detailed analysis of Pi dynamics with subcellular resolution in live plants.

摘要

尽管土壤中无机磷酸盐 (Pi) 的供应不稳定且常常不足,但植物必须将适量的 Pi 分配到每个细胞和亚细胞区室,以维持基本的代谢活动。因此,能够以亚细胞分辨率监测活植物中的 Pi 动态对于理解这种必需养分的获取、动员、再循环和储存至关重要。荧光指示蛋白用于无机磷酸盐 (FLIPPi) 的传感器是基于荧光共振能量转移的遗传编码荧光传感器,已被用于监测培养的动物细胞中的 Pi 动态。在这里,我们提出了一系列针对植物优化的 Pi 传感器。将 FLIPPi 传感器的增强型黄色荧光蛋白组件替换为 Venus 增强传感器的环状排列版本,其动态范围几乎提高了 2.5 倍。所得的环状排列的 FLIPPi 传感器经过了高效的诱变策略,该策略依赖于统计耦合分析来鉴定可能影响 Pi 亲和力的蛋白质区域。选择了一系列具有 0.08 至 11 mM 解离常数值的亲和力突变体,这些值涵盖了大多数植物细胞区室的范围。该传感器在拟南芥(Arabidopsis thaliana)中表达,并使用比率成像来监测根细胞中 Pi 动态对 Pi 剥夺和再供应的响应。此外,在野生型和缺乏 PHOSPHATE TRANSPORT4;2 质体 Pi 转运蛋白的突变体中表达的质体靶向传感器版本证实了该转运蛋白在根质体中 Pi 输出中的生理作用。因此,这些环状排列的 FLIPPi 传感器使我们能够以亚细胞分辨率在活植物中详细分析 Pi 动态。

相似文献

引用本文的文献

5
Recent advances in research on phosphate starvation signaling in plants.植物磷饥饿信号研究的最新进展。
J Plant Res. 2024 May;137(3):315-330. doi: 10.1007/s10265-024-01545-0. Epub 2024 Apr 26.
6
Engineering Plant Cell Fates and Functions for Agriculture and Industry.工程植物细胞命运和功能,用于农业和工业。
ACS Synth Biol. 2024 Apr 19;13(4):998-1005. doi: 10.1021/acssynbio.4c00047. Epub 2024 Apr 4.
7
Visualizing plant intracellular inorganic orthophosphate distribution.可视化植物细胞内无机磷酸盐的分布。
Nat Plants. 2024 Feb;10(2):315-326. doi: 10.1038/s41477-023-01612-9. Epub 2024 Jan 9.

本文引用的文献

2
MicroRNA-mediated surveillance of phosphate transporters on the move.微小 RNA 介导的对移动中的磷酸盐转运体的监控。
Trends Plant Sci. 2014 Oct;19(10):647-55. doi: 10.1016/j.tplants.2014.06.004. Epub 2014 Jul 4.
8
Transcriptional regulation of phosphate acquisition by higher plants.高等植物磷获取的转录调控。
Cell Mol Life Sci. 2012 Oct;69(19):3207-24. doi: 10.1007/s00018-012-1090-6. Epub 2012 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验